0
Research Papers: Conduction

Decreased Thermal Conductivity of Polyethylene Chain Influenced by Short Chain Branching

[+] Author and Article Information
Danchen Luo, Zun Huang

School of Electrical and Power Engineering,
China University of Mining and Technology,
Xuzhou 221116, China

Congliang Huang

School of Electrical and Power Engineering,
China University of Mining and Technology,
Xuzhou 221116, China;
Department of Mechanical Engineering,
University of Colorado,
Boulder, CO 80309-0427
e-mail: huangcl@cumt.edu.cn

1Corresponding author.

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF HEAT TRANSFER. Manuscript received December 30, 2016; final manuscript received July 26, 2017; published online October 25, 2017. Assoc. Editor: Alan McGaughey.

J. Heat Transfer 140(3), 031302 (Oct 25, 2017) (6 pages) Paper No: HT-16-1834; doi: 10.1115/1.4038003 History: Received December 30, 2016; Revised July 26, 2017

In this paper, we have studied the effect of short branches (side chains) on the thermal conductivity (TC) of a polyethylene (PE) chain. With a reverse nonequilibrium molecular dynamics (RNEMD) method, TCs of the pristine PE chain and the PE-ethyl chain are simulated and compared. It shows that the branch has a positive effect to decrease the TC of a PE chain. The TC of the PE-ethyl chain decreases with the number density increase of branches, until the density becomes larger than about eight ethyl per 200 segments, where the TC saturates to be only about 40% that of a pristine PE chain. Because of different weights, different branches will cause a different decrease of TCs, and a heavy branch will lead to a lower TC than a light one. This study is expected to provide some fundamental guidance to obtain a polymer with a low TC.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Li, G. , Shrotriya, V. , Yao, Y. , Huang, J. , and Yang, Y. , 2007, “ Manipulating Regioregular Poly (3-Hexylthiophene): [6,6]-Phenyl-C61-Butyric Acid Methyl Ester Blends-Route Towards High Efficiency Polymer Solar Cells,” J. Mater. Chem., 17(30), pp. 3126–3140. [CrossRef]
Nie, Z. , and Kumacheva, E. , 2008, “ Patterning Surfaces With Functional Polymers,” Nat. Mater., 7(4), pp. 277–290. [CrossRef] [PubMed]
Liu, C. , 2007, “ Recent Developments in Polymer MEMS,” Adv. Mater., 19(22), pp. 3783–3790. [CrossRef]
Ryan, A. J. , 2008, “ Nanotechnology: Squaring Up With Polymers,” Nature, 456(7220), pp. 334–336. [CrossRef] [PubMed]
Bruening, M. , and Dotzauer, D. , 2009, “ Polymer Films: Just Spray It,” Nat. Mater., 8(6), pp. 449–450. [CrossRef] [PubMed]
Charnley, M. , Textor, M. , and Acikgoz, C. , 2011, “ Designed Polymer Structures With Antifouling-Antimicrobial Properties,” React. Funct. Polym., 71(3), pp. 329–334. [CrossRef]
Han, Z. , and Fina, A. , 2011, “ Thermal Conductivity of Carbon Nanotubes and Their Polymer Nanocomposites: A Review,” Prog. Polym. Sci., 36(7), pp. 914–944. [CrossRef]
Singh, V. , Bougher, T. L. , Weathers, A. , Cai, Y. , Bi, K. , Pettes, M. T. , McMenamin, S. A. , Lv, W. , Resler, D. P. , Gattuso, T. R. , Altman, D. H. , Sandhage, K. H. , Shi, L. , Henry, A. , and Cola, B. A. , 2014, “ High Thermal Conductivity of Chain-Oriented Amorphous Polythiophene,” Nat. Nanotechnol., 9(5), pp. 384–390. [CrossRef] [PubMed]
Henry, A. , and Chen, G. , 2008, “ High Thermal Conductivity of Single Polyethylene Chains Using Molecular Dynamics Simulations,” Phys. Rev. Lett., 101(23), p. 235502. [CrossRef] [PubMed]
Cao, B. Y. , Li, Y. W. , Kong, J. , Chen, H. , Xu, Y. , Yung, K.-L. , and Cai, A. , 2011, “ High Thermal Conductivity of Polyethylene Nanowire Arrays Fabricated by an Improved Nanoporous Template Wetting Technique,” Polymer, 52(8), pp. 1711–1715. [CrossRef]
Henry, A. , Chen, G. , Plimpton, S. J. , and Thompson, A. , 2010, “ 1D-to-3D Transition of Phonon Heat Conduction in Polyethylene Using Molecular Dynamics Simulations,” Phys. Rev. B, 82(14), p. 144308. [CrossRef]
Jiang, J. W. , Zhao, J. , Zhou, K. , and Rabczuk, T. , 2012, “ Superior Thermal Conductivity and Extremely High Mechanical Strength in Polyethylene Chains From Ab Initio Calculation,” J. Appl. Phys., 111(12), p. 124304. [CrossRef]
Shen, S. , Henry, A. , Tong, J. , Zheng, R. , and Chen, G. , 2010, “ Polyethylene Nanofibres With Very High Thermal Conductivities,” Nat. Nanotechnol., 5(4), pp. 251–255. [CrossRef] [PubMed]
Liu, J. , and Yang, R. , 2012, “ Length-Dependent Thermal Conductivity of Single Extended Polymer Chains,” Phys. Rev. B, 86(10), p. 104307. [CrossRef]
Luo, T. , Esfarjani, K. , Shiomi, J. , Henry, A. , and Chen, G. , 2011, “ Molecular Dynamics Simulation of Thermal Energy Transport in Polydimethylsiloxane (PDMS),” J. Appl. Phys., 109(7), p. 074321. [CrossRef]
Robbins, A. B. , and Minnich, A. J. , 2015, “ Crystalline Polymers With Exceptionally Low Thermal Conductivity Studied Using Molecular Dynamics,” Appl. Phys. Lett., 107(20), p. 201908. [CrossRef]
Umur, A. , Gemert, M. J. C. V. , and Ross, M. G. , 1986, Introduction to Physical Polymer Science, Wiley, Hoboken, NJ.
Hu, Y. , Zeng, L. , Minnich, A. J. , Dresselhaus, M. S. , and Chen, G. , 2015, “ Spectral Mapping of Thermal Conductivity Through Nanoscale Ballistic Transport,” Nat. Nanotechnol., 10(8), pp. 701–706. [CrossRef] [PubMed]
Zeng, L. , Collins, K. C. , Hu, Y. , Luckyanova, M. N. , Maznev, A. A. , Huberman, S. , Chiloyan, V. , Zhou, J. , Huang, X. , Nelson, K. A ., and Chen, G. , 2015, “ Measuring Phonon Mean Free Path Distributions by Probing Quasiballistic Phonon Transport in Grating Nanostructures,” Sci. Rep., 5(1), p. 17131. [CrossRef] [PubMed]
Henry, A. , and Chen, G. , 2009, “ Anomalous Heat Conduction in Polyethylene Chains: Theory and Molecular Dynamics Simulations,” Phys. Rev. B, 79(14), p. 144305. [CrossRef]
Sasikumar, K. , and Keblinski, P. , 2011, “ Effect of Chain Conformation in the Phonon Transport Across a Si-Polyethylene Single-Molecule Covalent Junction,” J. Appl. Phys., 109(11), p. 114307. [CrossRef]
Savin, A. V. , and Savina, O. I. , 2014, “ Dependence of the Thermal Conductivity of a Polymer Chain on Its Tension,” Phys. Solid State, 56(8), pp. 1664–1672. [CrossRef]
Liao, Q. , Zeng, L. , Liu, Z. , and Liu, W. , 2016, “ Tailoring Thermal Conductivity of Single-Stranded Carbon-Chain Polymers Through Atomic Mass Modification,” Sci. Rep., 6(1), p. 34999. [CrossRef] [PubMed]
Ma, H. , and Tian, Z. , 2017, “ Effects of Polymer Topology and Morphology on Thermal Transport: A Molecular Dynamics Study of Bottlebrush Polymers,” Appl. Phys. Lett., 110(9), p. 091903. [CrossRef]
Zhang, T. , Wu, X. , and Luo, T. , 2014, “ Polymer Nanofibers With Outstanding Thermal Conductivity and Thermal Stability: Fundamental Linkage Between Molecular Characteristics and Macroscopic Thermal Properties,” J. Phys. Chem. C, 118(36), pp. 21148–21159. [CrossRef]
Zhang, L. , Ruesch, M. , Zhang, X. , Bai, Z. , and Liu, L. , 2015, “ Tuning Thermal Conductivity of Crystalline Polymer Nanofibers by Interchain Hydrogen Bonding,” RSC Adv., 5(107), pp. 87981–87986. [CrossRef]
Zhang, T. , and Luo, T. , 2012, “ Morphology-Influenced Thermal Conductivity of Polyethylene Single Chains and Crystalline Fibers,” J. Appl. Phys., 112(9), p. 094304. [CrossRef]
Ma, H. , and Tian, Z. , 2015, “ Effects of Polymer Chain Confinement on Thermal Conductivity of Ultrathin Amorphous Polystyrene Films,” Appl. Phys. Lett., 107(7), p. 073111. [CrossRef]
Luo, T. , and Lloyd, J. R. , 2012, “ Enhancement of Thermal Energy Transport Across Graphene/Graphite and Polymer Interfaces: A Molecular Dynamics Study,” Adv. Funct. Mater., 19(12), pp. 587–596.
Sun, H. , 1998, “ COMPASS: An Ab Initio Force-Field Optimized for Condensed-Phase Applications Overview With Details on Alkane and Benzene Compounds,” J. Phys. Chem. B, 102(38), pp. 7338–7364. [CrossRef]
Sun, H. , Ren, P. , and Fried, J. R. , 1998, “ The COMPASS Force Field: Parameterization and Validation for Phosphazenes,” Comput. Theor. Polym. Sci., 8(1–2), pp. 229–246. [CrossRef]
Rigby, D. , Sun, H. , and Eichinger, B. E. , 1997, “ Computer Simulations of Poly (Ethylene Oxide): Force Field, PVT Diagram and Cyclization Behavior,” Polym. Int., 44(3), pp. 311–330. [CrossRef]
Nose, S. , 1984, “ A Unified Formulation of the Constant Temperature Molecular Dynamics Methods,” Rev. Faith Int. Affairs, 81(1), p. 511. [CrossRef]
Hoover, W. G. , 1985, “ Canonical Dynamics: Equilibrium Phase-Space Distributions,” Phys. Rev. A, 31(3), pp. 1695–1697. [CrossRef]
Müllerplathe, F. , 1997, “ A Simple Nonequilibrium Molecular Dynamics Method for Calculating the Thermal Conductivity,” J. Chem. Phys., 106(14), p. 6082. [CrossRef]
Huang, C. , Wang, Q. , and Rao, Z. , 2015, “ Thermal Conductivity Prediction of Copper Hollow Nanowire,” Int. J. Therm. Sci., 94, pp. 90–95. [CrossRef]
Ni, B. , Watanabe, T. , and Phillpot, S. R. , 2009, “ Thermal Transport in Polyethylene and at Polyethylene-Diamond Interfaces Investigated Using Molecular Dynamics Simulation,” J. Phys.: Condens. Matter, 21(8), p. 084219. https://doi.org/10.1088/0953-8984/21/8/084219
Hu, G. J. , Cao, B. Y. , and Li, Y. W. , 2014, “ Thermal Conduction in a Single Polyethylene Chain Using Molecular Dynamics Simulations,” Chin. Phys. Lett., 31(8), p. 086501. https://doi.org/10.1088/0256-307X/31/8/086501
Termentzidis, K. , Merabia, S. , Chantrenne, P. , and Keblinski, P. , 2011, “ Cross-Plane Thermal Conductivity of Superlattices With Rough Interfaces Using Equilibrium and Non-Equilibrium Molecular Dynamics,” Int. J. Heat Mass Transfer, 54(9), pp. 2014–2020. [CrossRef]
Landry, E. S. , Hussein, M. I. , and McGaughey, A. J. H. , 2008, “ Complex Superlattice Unit Cell Designs for Reduced Thermal Conductivity,” Phys. Rev. B, 77(18), p. 184302. [CrossRef]
Hu, L. , Evans, W. J. , and Keblinski, P. , 2011, “ One-Dimensional Phonon Effects in Direct Molecular Dynamics Method for Thermal Conductivity Determination,” J. Appl. Phys., 110(11), p. 113511. [CrossRef]
Qian, X. , Gu, X. K. , and Yang, R. G. , 2016, “ Lattice Thermal Conductivity of Organic-Inorganic Hybrid Perovskite CH3NH3PbI,” Appl. Phys. Lett., 108(6), p. 063902. [CrossRef]
Li, C. J. , Li, G. , and Zhao, H. J. , 2015, “ Thermal Conductivity Variation of Graphene With Patterned Double-Side Hydrogen Doping,” J. Appl. Phys., 118(7), p. 075102. [CrossRef]
Thomas, J. A. , Turney, J. E. , Iutzi, R. M. , Amon, C. H. , and McGaughey, A. J. , 2010, “ Predicting Phonon Dispersion Relations and Lifetimes From the Spectral Energy Density,” Phys. Rev. B, 81(8), p. 081411. [CrossRef]
Feng, T. , Qiu, B. , and Ruan, X. , 2015, “ Anharmonicity and Necessity of Phonon Eigenvectors in the Phonon Normal Mode Analysis,” J. Appl. Phys., 117(19), p. 195102. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Schematic structures of PE chains: (a) a pristine PE chain with a length of ten segments and (b) a PE-ethyl chain

Grahic Jump Location
Fig. 2

Temperature distribution of a pristine PE chain with a length of 100 segments (25 nm)

Grahic Jump Location
Fig. 3

TC of a pristine PE chain with a length of 100 segments

Grahic Jump Location
Fig. 4

TC of a pristine PE chain: (a) compared with results simulated by Ni et al. [37], Hu et al. [38], and Liu and Yang [14] and (b) inverse of the TC plotted against the inverse of the chain length

Grahic Jump Location
Fig. 5

Length dependence of TCs of the PE chain and the PE-ethyl chain

Grahic Jump Location
Fig. 6

VDOS of the PE and PE-ethyl chains

Grahic Jump Location
Fig. 7

SEDs of a pristine PE chain (a) and a PE-ethyl chain with a branch number density of one branch per ten segments (b). The shading signifies the magnitude of the SED.

Grahic Jump Location
Fig. 8

The phonon relaxation times in a pristine PE chain and a PE-ethyl chain

Grahic Jump Location
Fig. 9

TC of the PE-ethyl chain with different branch locations: (a) structures with 100 segments used in the simulation and (b) effect of branch locations on the TC. Dashed lines stand for the pristine PE chains.

Grahic Jump Location
Fig. 10

TCs of PE chains with different types of branches

Grahic Jump Location
Fig. 11

TC of a PE chain with different number density of branches: (a) two special branch arrangements (only a part is shown here) and (b) TC comparison between two arrangements

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In