Brochard,
F.
, and
De Gennes,
P. G.
, 1992, “Shear-Dependent Slippage at a Polymer/Solid Interface,” Langmuir,
8(12), pp. 3033–3037.

[CrossRef]
Inn,
Y.
, and
Wang,
S.-Q.
, 1996, “Hydrodynamic Slip: Polymer Adsorption and Desorption at Melt/Solid Interfaces,” Phys. Rev. Lett.,
76(3), pp. 467–470.

[CrossRef] [PubMed]
Schowalter,
W. R.
, 1988, “The Behavior of Complex Fluids at Solid Boundaries,” J. Non-Newtonian Fluid Mech.,
29, pp. 25–36.

[CrossRef]
Migler,
K. B.
,
Hervet,
H.
, and
Leger,
L.
, 1993, “Slip Transition of a Polymer Melt Under Shear Stress,” Phys. Rev. Lett.,
70(3), pp. 287–290.

[CrossRef] [PubMed]
Degré,
G.
,
Joseph,
P.
,
Tabeling,
P.
,
Lerouge,
S.
,
Cloitre,
M.
, and
Ajdari,
A.
, 2006, “Rheology of Complex Fluids by Particle Image Velocimetry in Microchannels,” Appl. Phys. Lett.,
89(2), p. 024104.

Navier,
C. L. M. H.
, 1827, “Memoire Sur Les Lois Du Mouvement Des Fluids,” Mem. Acad. R. Sci.,
6, pp. 389–440.

Hatzikiriakos,
S. G.
, 1993, “A Slip Model for Linear Polymers Based on Adhesive Failure,” Int. Polym. Process.,
8(2), pp. 135–142.

[CrossRef]
Ferrás,
L. L.
,
Nóbrega,
J. M.
, and
Pinho,
F. T.
, 2012, “Analytical Solutions for Channel Flows of Phan-Thien-Tanner and Giesekus Fluids Under Slip,” J. Non-Newtonian Fluid Mech.,
171–172, pp. 97–105.

[CrossRef]
Tretheway,
D. C.
, and
Meinhart,
C. D.
, 2002, “Apparent Fluid Slip at Hydrophobic Microchannel Walls,” Phys. Fluids,
14(3), p. L9.

Ibáñez,
G.
,
López,
A.
,
Pantoja,
J.
,
Moreira,
J.
, and
Reyes,
J. A.
, 2013, “Optimum Slip Flow Based on the Minimization of Entropy Generation in Parallel Plate Microchannels,” Energy,
50(1), pp. 143–149.

[CrossRef]
Thien,
N. P.
, and
Tanner,
R. I.
, 1977, “A New Constitutive Equation Derived From Network Theory,” J. Non-Newtonian Fluid Mech.,
2(4), pp. 353–365.

[CrossRef]
Phan-Thien,
N.
, 1978, “A Nonlinear Network Viscoelastic Model,” J. Rheol.,
22(3), pp. 259–283.

[CrossRef]
Oliveira,
P. J.
, and
Pinho,
F. T.
, 1999, “Analytical Solution for Fully Developed Channel and Pipe Flow of Phan-Thien–Tanner Fluids,” J. Fluid Mech.,
387, pp. 271–280.

[CrossRef]
Afonso,
A. M.
,
Alves,
M. A.
, and
Pinho,
F. T.
, 2009, “Analytical Solution of Mixed Electro-Osmotic/Pressure Driven Flows of Viscoelastic Fluids in Microchannels,” J. Non-Newtonian Fluid Mech.,
159(1–3), pp. 50–63.

[CrossRef]
Afonso,
A. M.
,
Ferrás,
L. L.
,
Nóbrega,
J. M.
,
Alves,
M. A.
, and
Pinho,
F. T.
, 2014, “Pressure-Driven Electrokinetic Slip Flows of Viscoelastic Fluids in Hydrophobic Microchannels,” Microfluid. Nanofluid.,
16(6), pp. 1131–1142.

[CrossRef]
Hashemabadi,
S. H.
,
Etemad,
S. G.
,
Thibault,
J.
, and
Golkar Naranji,
M. R.
, 2003, “Analytical Solution for Dynamic Pressurization of Viscoelastic Fluids,” Int. J. Heat Fluid Flow,
24(1), pp. 137–144.

[CrossRef]
Ferrás,
L. L.
,
Afonso,
A. M.
,
Alves,
M. A.
,
Nóbrega,
J. M.
, and
Pinho,
F. T.
, 2016, “Electro-Osmotic and Pressure-Driven Flow of Viscoelastic Fluids in Microchannels: Analytical and Semi-Analytical Solutions,” Phys. Fluids,
28(9), p. 093102.

Bejan,
A.
, 1996, Entropy-Generation Minimization,
CRC Press,
New York.

Bejan,
A.
, 1994, Entropy Generation Through Heat and Fluid Flow,
Wiley,
New York.

Mahmud,
S.
, and
Andrew Fraser,
R.
, 2005, “Flow, Thermal, and Entropy Generation Characteristics Inside a Porous Channel With Viscous Dissipation,” Int. J. Therm. Sci.,
44(1), pp. 21–32.

[CrossRef]
Escandón,
J.
,
Bautista,
O.
, and
Méndez,
F.
, 2013, “Entropy Generation in Purely Electroosmotic Flows of Non-Newtonian Fluids in a Microchannel,” Energy,
55, pp. 486–496.

[CrossRef]
Goswami,
P.
,
Mondal,
P. K.
,
Datta,
A.
, and
Chakraborty,
S.
, 2016, “Entropy Generation Minimization in an Electroosmotic Flow of Non-Newtonian Fluid: Effect of Conjugate Heat Transfer,” ASME J. Heat Transfer,
138(5), p. 051704.

[CrossRef]
Ibáñez,
G.
, and
Cuevas,
S.
, 2010, “Entropy Generation Minimization of a MHD (Magnetohydrodynamic) Flow in a Microchannel,” Energy,
35(10), pp. 4149–4155.

[CrossRef]
Ibáñez,
G.
,
López,
A.
, and
Cuevas,
S.
, 2012, “Optimum Wall Thickness Ratio Based on the Minimization of Entropy Generation in a Viscous Flow Between Parallel Plates,” Int. Commun. Heat Mass Transfer,
39(5), pp. 587–592.

[CrossRef]
Mondal,
P. K.
, and
Dholey,
S.
, 2015, “Effect of Conjugate Heat Transfer on the Irreversibility Generation Rate in a Combined Couette–Poiseuille Flow Between Asymmetrically Heated Parallel Plates: The Entropy Minimization Analysis,” Energy,
83, pp. 55–64.

[CrossRef]
Avci,
M.
,
Aydin,
O.
, and
Emin Arici,
M.
, 2012, “Conjugate Heat Transfer With Viscous Dissipation in a Microtube,” Int. J. Heat Mass Transfer,
55(19–20), pp. 5302–5308.

[CrossRef]
Hettiarachchi,
H. D. M.
,
Golubovic,
M.
,
Worek,
W. M.
, and
Minkowycz,
W. J.
, 2008, “Slip-Flow and Conjugate Heat Transfer in Rectangular Microchannels,” ASME Paper No. HT2008-56233.

Barletta,
A.
,
di Schio,
E. R.
,
Comini,
G.
, and
D'Agaro,
P.
, 2008, “Conjugate Forced Convection Heat Transfer in a Plane Channel: Longitudinally Periodic Regime,” Int. J. Therm. Sci.,
47(1), pp. 43–51.

[CrossRef]
Saeid,
N. H.
, 2007, “Conjugate Natural Convection in a Vertical Porous Layer Sandwiched by Finite Thickness Walls,” Int. Commun. Heat Mass Transfer,
34(2), pp. 210–216.

[CrossRef]
Bautista,
O.
,
Sánchez,
S.
,
Arcos,
J. C.
, and
Méndez,
F.
, 2013, “Lubrication Theory for Electro-Osmotic Flow in a Slit Microchannel With the Phan-Thien and Tanner Model,” J. Fluid Mech.,
722, pp. 496–532.

[CrossRef]
Sánchez,
S.
,
Méndez,
F.
,
Martínez-Suástegui,
L.
, and
Bautista,
O.
, 2012, “Asymptotic Analysis for the Conjugate Heat Transfer Problem in an Electro-Osmotic Flow With Temperature-Dependent Properties in a Capillary,” Int. J. Heat Mass Transfer,
55(25–26), pp. 8163–8171.

[CrossRef]
Gaikwad, H. S.
,
Basu, D. N.
, and
Mondal, P. K.
, 2016, “Non-Linear Drag Induced Irreversibility Minimization in a Viscous Dissipative Flow Through a Micro-Porous Channel,” Energy,
119, pp. 588–600.

Sarma,
R.
,
Gaikwad,
H.
, and
Mondal,
P. K.
, 2017, “Effect of Conjugate Heat Transfer on Entropy Generation in Slip-Driven Microflow of Power Law Fluids,” Nanoscale Microscale Thermophys. Eng.,
21(1), pp. 26–44.

[CrossRef]
Coelho,
P.
,
Pinho,
F.
, and
Oliveira,
P.
, 2002, “Fully Developed Forced Convection of the Phan–Thien–Tanner Fluid in Ducts With a Constant Wall Temperature,” Int. J. Heat Mass Transfer,
45(7), pp. 1413–1423.

[CrossRef]
Thompson,
P. A.
, and
Troian,
S. M.
, 1997, “A General Boundary Condition for Liquid Flow at Solid Surfaces,” Nature,
389, pp. 360–362.

[CrossRef]
Leal,
L. G.
, 2007, Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes,
Cambridge University Press, New York.

[CrossRef]
Snyder,
W. T.
, 1964, “The Influence of Wall Conductance on Magnetohydrodynamic Channel-Flow Heat Transfer,” ASME J. Heat Transfer,
86(4), pp. 552–556.

[CrossRef]
Hwang,
T. H.
,
Cai,
Y.
, and
Cheng,
P.
, 1992, “An Experimental Study of Forced Convection in a Packed Channel With Asymmetric Heating,” Int. J. Heat Mass Transfer,
35(11), pp. 3029–3039.

[CrossRef]
Holman,
J. P.
, 2009, Heat Transfer, 10th ed., McGraw-Hill, New York.

Bird,
R. B.
,
Armstrong,
R. C.
, and
Hassager,
O.
, 1987, Dynamics of Polymeric Liquids (Fluid Mechanics), 2nd ed., Vol.
1, Wiley, Hoboken, NJ.