0
Technical Brief

Evaporation of a Liquid Droplet in the Presence of a Nanoparticle

[+] Author and Article Information
V. Arun Kumar

School of Nano Science and Technology,
National Institute of Technology Calicut,
Kozhikode 673601, India

Sarith P. Sathian

Department of Applied Mechanics,
Indian Institute of Technology Madras,
Chennai 600036, India
e-mail: sarith@iitm.ac.in

1Corresponding author.

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF HEAT TRANSFER. Manuscript received September 15, 2016; final manuscript received September 17, 2017; published online January 17, 2018. Editor: Portonovo S. Ayyaswamy.

J. Heat Transfer 140(5), 054501 (Jan 17, 2018) (7 pages) Paper No: HT-16-1585; doi: 10.1115/1.4038477 History: Received September 15, 2016; Revised September 17, 2017

Nonequilibrium molecular dynamics (MD) simulations have been performed to understand the evaporation of a liquid droplet in the presence of a solid nanoparticle. The influence of solid–liquid interaction strength (εsl) on the evaporation properties was addressed. The system consists of a solid nanoparticle (platinum) engulfed in a droplet (argon) in Argon vapor environment. After the equilibration of this nanoparticle embedded droplet with its vapor, the boundary of this system is heated continuously to evaporate the droplet. It is observed that the addition of a nanoparticle to the droplet resulted in a slower evaporation rate when compared to that of a pure droplet. It was found that the evaporation rate of the droplet is decreased with increasing solid–liquid interaction strength (εsl) and those liquid atoms around the solid nanoparticle with higher εsl are able to delay evaporation even at higher temperature owing to its decreased interfacial resistance. In order to analyze further on the vibrational coupling of the solid and liquid atoms, the vibrational density of states (VDOS) of the solid atoms is studied. It is observed that the DOS of the solid atoms exhibited a higher population in the lower frequency range with the highest peak observed for a lower value of εsl. For low values of εsl, we observe a decrease in the overlap between the VDOS of the solid atom and the interfacial liquid atoms. It is observed that for higher values of εsl, the particle is able to retain a structured layer of liquid even at high temperature and also a higher heat input is necessitated to break the interaction strength of the liquid molecules around the solid nanoparticle, which makes it possible in delaying the complete evaporation of the droplet.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Kryukov, A. P. , Levashov, V. Yu. , and Sazhin, S. S. , 2004, “Evaporation of Diesel Fuel Droplets: Kinetic Versus Hydrodynamic Models,” Int. J. Heat Mass Transfer, 47(12–13), pp. 2541–2549. [CrossRef]
Langmuir, I. , 1918, “The Evaporation of Small Spheres,” Phys. Rev., 12, pp. 368–370. [CrossRef]
Frohn, A. , and Roth, N. , 2000, Dynamics of Droplets, Springer Science & Business Media, Berlin. [CrossRef]
Rusanov, A. , and Brodskaya, E. , 1977, “The Molecular Dynamics Simulation of a Small Drop,” J. Colloid Interface Sci., 62(3), pp. 542–555. [CrossRef]
Thompson, S. M. , Gubbins, K. E. , Walton, J. P. R. B. , Chantry, R. A. R. , and Rowlinson, J. S. , 1984, “A Molecular Dynamics Study of Liquid Drops,” J. Chem. Phys., 81(1), pp. 530–542. [CrossRef]
Long, L. N. , Micci, M. M. , and Wong, B. C. , 1996, “Molecular Dynamics Simulations of Droplet Evaporation,” Comput. Phys. Commun., 96(2–3), pp. 167–172. [CrossRef]
Little, J. K. , 1996, “Simulation of Droplet Evaporation in Supercritical Environments Using Parallel Molecular Dynamics,” Ph.D. thesis, Pennsylvania State University, State College, PA. http://www.dtic.mil/docs/citations/ADA318725
Kaltz, T. , Long, L. , Micci, M. M. , and Little, J. , 1998, “Supercritical Vaporization of Liquid Oxygen Droplets Using Molecular Dynamics,” Combust. Sci. Technol., 136(1–6), pp. 279–301. [CrossRef]
Walther, J. H. , and Koumoutsakos, P. , 2001, “Molecular Dynamics Simulation of Nanodroplet Evaporation,” ASME J. Heat Transfer, 123(4), pp. 741–748. [CrossRef]
Sumardiono, S. , and Fischer, J. , 2006, “Molecular Simulations of Droplet Evaporation Processes: Adiabatic Pressure Jump Evaporation,” Int. J. Heat Mass Transfer, 49(5–6), pp. 1148–1161. [CrossRef]
Sumardiono, S. , and Fischer, J. , 2007, “Molecular Simulations of Droplet Evaporation by Heat Transfer,” Microfluid. Nanofluid., 3(2), pp. 127–140. [CrossRef]
Landry, E. S. , Mikkilineni, S. , Paharia, M. , and McGaughey, A. J. H. , 2007, “Droplet Evaporation: A Molecular Dynamics Investigation,” J. Appl. Phys., 102(12), p. 124301. [CrossRef]
Hołyst, R. , and Litniewski, M. , 2008, “Heat Transfer at the Nanoscale: Evaporation of Nanodroplets,” Phys. Rev. Lett., 100, p. 055701. [CrossRef] [PubMed]
Wang, B.-B. , Wang, X.-D. , Chen, M. , and Xu, J.-L. , 2013, “Molecular Dynamics Simulations on Evaporation of Droplets With Dissolved Salts,” Entropy, 15(4), pp. 1232–1246. [CrossRef]
Sajith, V. , Sobhan, C. B. , and Peterson, G. P. , 2010, “Experimental Investigations on the Effects of Cerium Oxide Nanoparticle Fuel Additives on Biodiesel,” Adv. Mech. Eng., 2, p. 581407. [CrossRef]
Yetter, R. A. , Risha, G. A. , and Son, S. F. , 2009, “Metal Particle Combustion and Nanotechnology,” Proc. Combust. Inst., 32(2), pp. 1819–1838. [CrossRef]
Tyagi, H. , Phelan, P. E. , Prasher, R. , Peck, R. , Lee, T. , Pacheco, J. R. , and Arentzen, P. , 2008, “Increased Hot-Plate Ignition Probability for Nanoparticle-Laden Diesel Fuel,” Nano Lett., 8(5), pp. 1410–1416. [CrossRef] [PubMed]
Allen, C. , Mittal, G. , Sung, C.-J. , Toulson, E. , and Lee, T. , 2011, “An Aerosol Rapid Compression Machine for Studying Energetic-Nanoparticle-Enhanced Combustion of Liquid Fuels,” Proc. Combust. Inst., 33(2), pp. 3367–3374. [CrossRef]
Tanvir, S. , and Qiao, L. , 2014, “Effect of Addition of Energetic Nanoparticles on Droplet-Burning Rate of Liquid Fuels,” J. Propul. Power, 31(1), pp. 408–415. [CrossRef]
Tanvir, S. , and Qiao, L. , 2016, “Droplet Burning Rate Enhancement of Ethanol With the Addition of Graphite Nanoparticles: Influence of Radiation Absorption,” Combust. Flame, 166, pp. 34–44. [CrossRef]
Chen, G. , 1996, “Nonlocal and Nonequilibrium Heat Conduction in the Vicinity of Nanoparticles,” ASME J. Heat Transfer, 118(3), pp. 539–545. [CrossRef]
Merabia, S. , Shenogin, S. , Joly, L. , Keblinski, P. , and Barrat, J.-L. , 2009, “Heat Transfer From Nanoparticles: A Corresponding State Analysis,” Proc. Natl. Acad. Sci., 106(36), pp. 15113–15118. [CrossRef]
Merabia, S. , Keblinski, P. , Joly, L. , Lewis, L. J. , and Barrat, J.-L. , 2009, “Critical Heat Flux Around Strongly Heated Nanoparticles,” Phys. Rev. E, 79(2), p. 021404. [CrossRef]
Spijker, P. , Markvoort, A. J. , Nedea, S. V. , and Hilbers, P. A. J. , 2010, “Computation of Accommodation Coefficients and the Use of Velocity Correlation Profiles in Molecular Dynamics Simulations,” Phys. Rev. E, 81(1), p. 011203. [CrossRef]
Plimpton, S. , 1995, “Fast Parallel Algorithms for Short-Range Molecular Dynamics,” J. Comput. Phys., 117(1), pp. 1–19. [CrossRef]
Humphrey, W. , Dalke, A. , and Schulten, K. , 1996, “VMD—Visual Molecular Dynamics,” J. Mol. Graph., 14(1), pp. 33–38. [CrossRef] [PubMed]
Vrabec, J. , Kedia, G. K. , Fuchs, G. , and Hasse, H. , 2006, “Comprehensive Study of the Vapour-Liquid Coexistence of the Truncated and Shifted Lennard-Jones Fluid Including Planar and Spherical Interface Properties,” Mol. Phys., 104(9), pp. 1509–1527. [CrossRef]
Haile, J. , 1991, Molecular Dynamics Simulation Elementary Methods, 1st ed., Wiley, Hoboken, NJ.
Allen, M. P. , and Tildesley, S. J. , 1986, Computer Simulation of Liquids, 1st ed., Clarendon Press, Gloucestershire, UK.
Nosé, S. , 1984, “A Unified Formulation of the Constant Temperature Molecular Dynamics Methods,” J. Chem. Phys., 81(1), pp. 511–519. [CrossRef]
Nosé, S. , 1984, “A Molecular Dynamics Method for Simulations in the Canonical Ensemble,” Mol. Phys., 52(2), pp. 255–268. [CrossRef]
Maruyama, S. , Matsumoto, S. , and Ogita, A. , 1994, “Surface Phenomena of Molecular Clusters by Molecular Dynamics Method,” Therm. Sci. Eng., 2(1), pp. 77–84 http://www.photon.t.u-tokyo.ac.jp/~maruyama/papers/94/tse21.pdf.
Chen, R.-H. , Phuoc, T. X. , and Martello, D. , 2010, “Effects of Nanoparticles on Nanofluid Droplet Evaporation,” Int. J. Heat Mass Transfer, 53(19–20), pp. 3677–3682. [CrossRef]
Shenogina, N. , Godawat, R. , Keblinski, P. , and Garde, S. , 2009, “How Wetting and Adhesion Affect Thermal Conductance of a Range of Hydrophobic to Hydrophilic Aqueous Interfaces,” Phys. Rev. Lett., 102, p. 156101. [CrossRef] [PubMed]
Barrat, J.-L. , and Chiaruttini, F. , 2003, “Kapitza Resistance at the Liquid-Solid Interface,” Mol. Phys., 101(11), pp. 1605–1610. [CrossRef]
Harikrishna, H. , Ducker, W. A. , and Huxtable, S. T. , 2013, “The Influence of Interface Bonding on Thermal Transport Through Solid–Liquid Interfaces,” Appl. Phys. Lett., 102(25), p. 251606. [CrossRef]
Hu, H. , and Sun, Y. , 2012, “Effect of Nanopatterns on Kapitza Resistance at a Water-Gold Interface During Boiling: A Molecular Dynamics Study,” J. Appl. Phys., 112(5), p. 053508. [CrossRef]
Tabor, D. , 1991, Gases, Liquids and Solids: And Other States of Matter, 3rd ed., Cambridge University Press, New York. [CrossRef]
Ge, S. , and Chen, M. , 2013, “Vibrational Coupling and Kapitza Resistance at a Solid-Liquid Interface,” Int. J. Thermophys., 34(1), pp. 64–77. [CrossRef]
Issa, K. M. , and Mohamad, A. A. , 2012, “Lowering Liquid-Solid Interfacial Thermal Resistance With Nanopatterned Surfaces,” Phys. Rev. E, 85, p. 031602. [CrossRef]
Kara, A. , and Rahman, T. S. , 1998, “Vibrational Properties of Metallic Nanocrystals,” Phys. Rev. Lett., 81, pp. 1453–1456. [CrossRef]
Derlet, P. M. , Meyer, R. , Lewis, L. J. , Stuhr, U. , and Van Swygenhoven, H. , 2001, “Low-Frequency Vibrational Properties of Nanocrystalline Materials,” Phys. Rev. Lett., 87, p. 205501. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

Schematic diagram of the simulation domain

Grahic Jump Location
Fig. 2

Visualization of the time evolution of a solid nanoparticle embedded droplet: (a) before equilibration and (b) after equilibration

Grahic Jump Location
Fig. 3

(a) Temporal evolution of atoms during equilibration phase and (b) evaporation curve for the droplet

Grahic Jump Location
Fig. 4

(a) Variation of number of atoms in the droplet as a function of elapsed simulation time for different values of εsl and (b) effect of solid–liquid interaction energy (εsl) on the evaporation temperature

Grahic Jump Location
Fig. 5

Variation of droplet and particle temperatures with simulation time for cases A and E, respectively: (a) case A and (b) case E

Grahic Jump Location
Fig. 6

Temporal variation of dimensionless attractive force (F*) for the surface atoms of the droplet for different εsl

Grahic Jump Location
Fig. 7

The vibrational density of states profile of solid atoms for different εsl

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In