Duderstadt,
J.
, and
Hamilton,
L.
, 1976, Nuclear Reactor Analysis,
Wiley, New York.

Todreas,
N.
, and
Kazimi,
M.
, 2012, Nuclear Systems, Vol. 1,
CRC Press, Boca Raton, FL.

Tennery,
V.
, 1959, “Review of Thermal Conductivity and Heat Transfer in Uranium Dioxide,”
Oak Ridge National Laboratory, Oak Ridge, TN, Report No. ORNL-2656.

Popov,
S.
,
Carbajo,
J.
,
Ivanov,
V.
, and
Yoder,
G.
, 2000, “Thermophysical Properties of MOX and UO

_{2} Fuels Including the Effects of Irradiation,” Oak Ridge National Laboratory, Oak Ridge, TN, Report No. ORNL/TM-2000/351.

https://rsicc.ornl.gov/fmdp/tm2000-351.pdfMeyer, M. K., Gan, J., Jue, J. F., Keiser, D. D., Perez, E., Robinson, A., Wachs, D. M., Woolstenhulme, N., Hofman, G. L., and Kim, Y. S., 2014, “Irradiation Performance of U-Mo Monolithic Fuel,” Nucl. Eng. Technol.,
46(2), pp. 169–182.

[CrossRef]
Szpunar,
B.
, and
Szpunar,
J.
, 2014, “Thermal Conductivity of Uranium Nitride and Carbide,” Int. J. Nucl. Energy, **2014**, p. 178360.

Du,
S.
, Gofryk, K., Andersson, D. A., Liu, X. Y., and Stanek, C. R., 2011, “A Molecular Dynamics Study of Anisotropy and the Effect of Xe on UO

_{2} Thermal Conductivity,” Los Alamos National Laboratory, Los Alamos, NM, Report No. M3MS-13LA0602045.

http://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-13-20713
Morel,
J. E.
, and
McGhee,
J. M.
, 1999, “A Self-Adjoint Angular Flux Equation,” Nucl. Sci. Eng.,
132(3), pp. 312–325.

Gaston,
D.
, Newman, C., Hansen, G., and Lebrun-Grandié, D., 2009, “MOOSE: A Parallel Computational Framework for Coupled Systems of Nonlinear Equation,” Nucl. Eng. Des.,
239(10), pp. 1768–1778.

[CrossRef]
Harter,
J.
,
Greaney,
P. A.
, and
Palmer,
T. S.
, 2015, “Characterization of Thermal Conductivity Using Deterministic Phonon Transport in Rattlesnake,” Trans. Am. Nucl. Soc.,
112, pp. 829–832.

http://alexgreaney.com/media/publications/Harter_2015_ANS_PhononBTE.pdf
Ziman,
J.
, 2001, Electrons and Phonons: The Theory of Transport Phenomena in Solids,
Oxford University Press, London.

[CrossRef]
Majumdar,
A.
, 1993, “Microscale Heat Conduction in Dielectric Thin Films,” ASME J. Heat Transfer,
115(1), pp. 7–16.

[CrossRef]
Knoll,
D.
, and
Keyes,
D.
, 2004, “Jacobian-Free Newton–Kryloc Methods: A Survey of Approaches and Applications,” J. Comput. Phys.,
193(2), pp. 357–397.

[CrossRef]
Wang,
Y.
,
Zhang,
H.
, and
Martineau,
R.
, 2014, “Diffusion Acceleration Schemes for Self-Adjoint Angular Flux Formulation With a Void Treatment,” Nucl. Sci. Eng.,
176(2), pp. 201–225.

Allu,
P.
, and
Mazumder,
S.
, 2016, “Hybrid Ballistic-Diffusive Solution to the Frequency Dependent Phonon Boltzmann Transport Equation,” Int. J. Heat Mass Transfer,
100, pp. 165–177.

[CrossRef]
Li,
W.
, Carrete, J., Katcho, N. A., and Mingo, N., 2014, “ShengBTE: A Solver of the Boltzmann Transport Equation for Phonons,” Comput. Phys. Commun.,
185(6), pp. 1747–1758.

de Sousa Oliveira,
L.
, 2015, “Thermal Resistance From Irradiation Defects in Graphite,” Comput. Mater. Sci.,
103, pp. 68–76.

Chernatynskiy,
A.
, and
Phillpot,
S. R.
, 2015, “Phonon Transport Simulator (PhonTS),” Comput. Phys. Commun.,
192, pp. 196–204.

[CrossRef]
Yilbas,
B.
, and
Bin Mansoor,
S.
, 2012, “Phonon Transport in Two-Dimensional Silicon Thin Film: Influence of Film Width and Boundary Conditions on Temperature Distribution,” Eur. Phys. J. B,
85, p. 243.

[CrossRef]Bergman, T. L., Lavine, A. S., Incropera, F. P., and Dewitt, D. P., 2007, Introduction to Heat Transfer, 5th ed.,
Wiley, Hoboken, NJ.

Saad,
Y.
, and
Schultz,
M.
, 1986, “GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems,” SIAM J. Sci. Comput.,
7(3), pp. 856–869.

Saad,
Y.
, 2003, Iterative Methods for Sparse Linear Systems, 2nd ed.,
Society for Industrial and Applied Mathematics, Philadelphia, PA.

[CrossRef]
Xiao-Feng,
T.
,
Chong-Sheng,
L.
,
Zheng-He,
Z.
, and
Tao,
G.
, 2010, “Molecular Dynamics Simulation of Collective Behaviour of Xe in UO_{2},” Chin. Phys. B,
19(5), p. 057102.

Colbert,
M.
,
Tréglia,
G.
, and
Ribeiro,
F.
, 2014, “Theoretical Study of Xenon Adsorption in UO_{2} Nanoporous Matrices,” J. Phys.: Condens. Matter,
26(48), p. 485015.

Sasaki,
S.
,
Wada,
N.
, and
Kume,
H. T.
, 2008, “High-Pressure Brillouin Study of the Elastic Properties of Rare-Gas Solid Xenon at Pressures Up to 45 GPa,” J. Raman Spectrosc.,
40(2), pp. 121–127.

Lewis,
E.
, and
Miller,
W.
, 1993, Computational Methods of Neutron Transport,
American Nuclear Society, La Grange Park, IL.

Togo,
A.
,
Oba,
F.
, and
Tanaka,
I.
, 2008, “First-Principles Calculations of the Ferroelastic Transition Between Rutile-Type and Cacl 2-Type Sio 2 at High Pressures,” Phys. Rev. B,
78(13), p. 134106.

[CrossRef]
Kresse,
G.
, and
Hafner,
J.
, 1994, “Ab Initio Molecular-Dynamics Simulation of the Liquid-Metal–Amorphous-Semiconductor Transition in Germanium,” Phys. Rev. B,
49(20), p. 14251.

[CrossRef]
Kresse,
G.
, and
Furthmüller,
J.
, 1996, “Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set,” Comput. Mater. Sci.,
6(1), pp. 15–50.

[CrossRef]
Kresse,
G.
, and
Furthmüller,
J.
, 1996, “Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set,” Phys. Rev. B,
54(16), p. 11169.

[CrossRef]
Perdew,
J. P.
, and
Zunger,
A.
, 1981, “Self-Interaction Correction to Density-Functional Approximations for Many-Electron Systems,” Phys. Rev. B,
23(10), p. 5048.

[CrossRef]
Wang,
B.-T.
,
Zhang,
P.
,
Lizárraga,
R.
,
Di Marco,
I.
, and
Eriksson,
O.
, 2013, “Phonon Spectrum, Thermodynamic Properties, and Pressure-Temperature Phase Diagram of Uranium Dioxide,” Phys. Rev. B,
88(10), p. 104107.

[CrossRef]
Plimpton,
S.
, 1995, “Fast Parallel Algorithms for Short-Range Molecular Dynamics,” J. Comput. Phys.,
117(1), pp. 1–19.

Kubo,
R.
,
Yokota,
M.
, and
Nakajima,
S.
, 1957, “Statistical-Mechanical Theory of Irreversible Processes—II: Response to Thermal Disturbance,” J. Phys. Soc. Jpn.,
12(11), pp. 1203–1211.

[CrossRef]Acree, W. E., Jr., and Chickos, J. S., 2017, *Thermochemical Data in NIST ChemistryWebBook, NIST Standard Reference Database Number 69*, P. J. Linstrom and W. G. Mallard, eds., National Institute of Standards and Technology, Gaithersburg, MD.

Mansoor,
S. B.
, and
Yilbas,
B.
, 2012, “Phonon Radiative Transport in Silicon-Aliuminum Thin Films: Frequency Dependent Case,” Int. J. Therm. Sci.,
57, pp. 54–62.

Mansoor,
S. B.
, and
Yilbas,
B.
, 2011, “Phonon Transport in Silicon-Silicon and Silicon-Diamond Thin Films: Consideration of Thermal Boundary Resistance at Interface,” Phys. B,
406(11), pp. 1307–1330.

Singh,
D.
,
Guo,
X.
,
Alexeenko,
A.
,
Murthy,
J. Y.
, and
Fisher,
T. S.
, 2009, “Modeling of Subcontinuum Thermal Transport Across Semiconductor-Gas Interfaces,” J. Appl. Phys.,
106, p. 024314.

Landry,
E.
, and
McGaughey,
A.
, 2009, “Thermal Boundary Resistance Predictions From Molecular Dynamics Simulations and Theoretical Calculations,” Phys. Rev. B,
80(16), p. 165304.

Yang,
R.
, and
Chen,
G.
, 2004, “Thermal Conductivity Modeling of Periodic Two-Dimensional Nanocomposites,” Phys. Rev. B,
69(19), p. 195316.

Swartz,
E.
, and
Pohl,
R.
, 1989, “Thermal Boundary Resistance,” Rev. Mod. Phys.,
61(3), pp. 605–667.

Thomas,
I.
, and
Srivastava,
G.
, 2014, “Theory of Interface and Anharmonic Phonon Interactions in Nanocomposite Materials,” IOP Conf. Ser.: Mater. Sci. Eng., **68**, p. 012007.

Cooper,
M.
,
Stanek,
C.
, and
Andersson,
D.
, 2017, “Simulations of Thermal Conductivity Reduction Due to Extended Xe-Vacancy Clusters and Defining Requirements for Modeling Spin-Phonon Scattering,” Los Alamos National Laboratory, Los Alamos, NM, Report No. M3MS-17LA0201033.