Technical Brief

On the Effect of Graphene Nanoplatelets on Water–Graphene Nanofluid Thermal Conductivity, Viscosity, and Heat Transfer Under Laminar External Flow Conditions

[+] Author and Article Information
B. Bahaya

Civil and Environmental Engineering,
University of Texas-San Antonio,
One UTSA Circle,
San Antonio, TX 78249

D. W. Johnson

Civil and Environmental Engineering,
University of Texas-San Antonio,
One UTSA Circle,
San Antonio, TX 78249
e-mail: drew.johnson@utsa.edu

C. C. Yavuzturk

Mechanical Engineering,
University of Hartford,
200 Bloomfield Avenue,
West Hartford, CT 06117

1Corresponding author.

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF HEAT TRANSFER. Manuscript received February 7, 2017; final manuscript received November 17, 2017; published online March 9, 2018. Editor: Portonovo S. Ayyaswamy.

J. Heat Transfer 140(6), 064501 (Mar 09, 2018) (4 pages) Paper No: HT-17-1069; doi: 10.1115/1.4038835 History: Received February 07, 2017; Revised November 17, 2017

Experiments were conducted with graphene nanoplatelets (GNP) to investigate the relative benefit of the thermal conductivity increase in relationship to the potential detriment of increased viscosity. The maximum enhancement ratio for GNP nanofluid thermal conductivity over water was determined to be 1.43 at a volume fraction of 0.014. Based on GNP aspect ratios, the differential effective medium model is shown to describe the experimental results of this study when using a fitted interfacial resistance value of 6 × 10−8 m2 K W−1. The viscosity model of Einstein provided close agreement between measured and predicted values when the effects of temperature were included and the intrinsic viscosity model term was adjusted to a value of 2151 representative for GNP. Heat transfer in external flows in laminar regime is predicted to decrease for GNP nanofluids when compared to water alone.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.


Chu, K. , Li, W.-S. , Dong, H.-F. , and Tang, F.-L. , 2012, “Modeling the Thermal Conductivity of Graphene Nanoplatelets Reinforced Composites,” Europhys. Lett., 100(3), p. 36001. [CrossRef]
Novoselov, K. S. , Fal'ko, V. I. , Colombo, L. , Gellert, P. R. , Schwab, M. G. , and Kim, K. , 2012, “A Roadmap for Graphene,” Nature, 490(7419), pp. 192–200. [CrossRef] [PubMed]
Balandin, A. A. , Ghosh, S. , Bao, W. , Calizo, I. , Teweldebrhan, D. , Miao, F. , and Lau, C. N. , 2008, “Superior Thermal Conductivity of Single-Layer Graphene,” Nano Lett., 8(3), pp. 902–907. [CrossRef] [PubMed]
Buongiorno, J. , Venerus, D. C. , Prabhat, N. , McKrell, T. , Townsend, J. , Christianson, R. , Tolmachev, Y. V. , Keblinski, P. , Hu, L.-W. , Alvarado, J. L. , Bang, I. C. , Bishnoi, S. W. , Bonetti, M. , Botz, F. , Cecere, A. , Chang, Y. , Chen, G. , Chen, H. , Chung, S. J. , Chyu, M. K. , Das, S. K. , Paola, R. D. , Ding, Y. , Dubois, F. , Dzido, G. , Eapen, J. , Escher, W. , Funfschilling, D. , Galand, Q. , Gao, J. , Gharagozloo, P. E. , Goodson, K. E. , Gutierrez, J. G. , Hong, H. , Horton, M. , Hwang, K. S. , Iorio, C. S. , Jang, S. P. , Jarzebski, A. B. , Jiang, Y. , Jin, L. , Kabelac, S. , Kamath, A. , Kedzierski, M. A. , Kieng, L. G. , Kim, C. , Kim, J.-H. , Kim, S. , Lee, S. H. , Leong, K. C. , Manna, I. , Michel, B. , Ni, R. , Patel, H. E. , Philip, J. , Poulikakos, D. , Reynaud, C. , Savino, R. , Singh, P. K. , Song, P. , Sundararajan, T. , Timofeeva, E. , Tritcak, T. , Turanov, A. N. , Vaerenbergh, S. V. , Wen, D. , Witharana, S. , Yang, C. , Yeh, W.-H. , Zhao, X.-Z. , and Zhou, S.-Q. , 2009, “A Benchmark Study on the Thermal Conductivity of Nanofluids,” J. Appl. Phys., 106(9), p. 094312. [CrossRef]
Murshed, S. M. S. , Leong, K. C. , and Yang, C. , 2008, “Investigations of Thermal Conductivity and Viscosity of Nanofluids,” Int. J. Therm. Sci., 47(5), pp. 560–568. [CrossRef]
Einstein, A. , 1905, “Über Die Von Der Molekularkinetischen Theorie Der Wärme Geforderte Bewegung Von in Ruhenden Flüssigkeiten Suspendierten Teilchen,” Annalen Der Physik, 322(8), pp. 549–560. [CrossRef]
Anoop, K. B. , Kabelac, S. , Sundararajan, T. , and Das, S. K. , 2009, “Rheological and Flow Characteristics of Nanofluids: Influence of Electroviscous Effects and Particle Agglomeration,” J. Appl. Phys., 106(3), p. 034909. [CrossRef]
O'Hanley, H. , Buongiorno, J. , McKrell, T. , and Hu, L.-W. , 2012, “Measurement and Model Validation of Nanofluid Specific Heat Capacity With Differential Scanning Calorimetry,” Adv. Mech. Eng., 4, p. 6. [CrossRef]
Rasheed, A. K. , Khalid, M. , Rashmi, W. , Gupta, T. C. S. M. , and Chan, A. , 2016, “Graphene Based Nanofluids and Nanolubricants – Review of Recent Developments,” Renewable Sustainable Energy Rev., 63, pp. 346–362. [CrossRef]
Kole, M. , and Dey, T. K. , 2013, “Investigation of Thermal Conductivity, Viscosity, and Electrical Conductivity of Graphene Based Nanofluids,” J. Appl. Phys., 113(8), p. 084307. [CrossRef]
Yu, W. , Xie, H. , Wang, X. , and Wang, X. , 2011, “Significant Thermal Conductivity Enhancement for Nanofluids Containing Graphene Nanosheets,” Phys. Lett. A, 375(10), pp. 1323–1328. [CrossRef]
Douglas, J. F. , and Garboczi, E. J. , 1995, “Intrinsic Viscosity and the Polarizability of Particles Having a Wide Range of Shapes,” Adv. Chem. Phys., 91, pp. 85–153.
Iranmanesh, S. , Mehrali, M. , Sadeghinezhad, E. , Ang, B. C. , Ong, H. C. , and Esmaeilzadeh, A. , 2016, “Evaluation of Viscosity and Thermal Conductivity of Graphene Nanoplatelets Nanofluids Through a Combined Experimental–Statistical Approach Using Respond Surface Methodology Method,” Int. Commun. Heat Mass Transfer, 79, pp. 74–80. [CrossRef]
Tharayil, T. , Asirvatham, L. G. , Ravindran, V. , and Wongwises, S. , 2016, “Thermal Performance of Miniature Loop Heat Pipe With Graphene–Water Nanofluid,” Int. J. Heat Mass Transfer, 93, pp. 957–968. [CrossRef]


Grahic Jump Location
Fig. 1

Relative thermal conductivity for differing GNP volume faction

Grahic Jump Location
Fig. 2

Experimental thermal conductivity enhancement compared with the thermal conductivity enhancement predicted from the differential effective medium model presented by Chu et al. [1] for different Rk

Grahic Jump Location
Fig. 3

Experimental relative viscosity compared to those predicted by Eqs. (3) and (14) for differing temperatures and GNP volume fraction

Grahic Jump Location
Fig. 4

Predicted heat transfer through a nanofluid with GNP volumetric fraction



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In