0
Technical Brief

Image-Based Rapid Measurements of Temperature-Dependent Thermal Conductivities

[+] Author and Article Information
Sichao Hou

Department of Chemical Engineering,
Northeastern University,
Boston, MA 02115

Ming Su

Department of Chemical Engineering,
Northeastern University,
Boston, MA 02115
e-mail: m.su@northeastern.edu

1Corresponding author.

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF HEAT TRANSFER. Manuscript received October 4, 2017; final manuscript received January 10, 2018; published online April 11, 2018. Assoc. Editor: Sara Rainieri.

J. Heat Transfer 140(8), 084501 (Apr 11, 2018) (8 pages) Paper No: HT-17-1581; doi: 10.1115/1.4039219 History: Received October 04, 2017; Revised January 10, 2018

This study establishes an image-based approach to determine the thermal conductivity of a metal material as a function of temperature using isotherm movement. The thermal conductivity within a range of temperature can be derived from a combined experimental and theoretical study based on Wiedemann–Franz law. A cubic relation between heating time and distance from heat source has been observed, proved, and used to determine the thermal conductivity at different temperature. The temporal and spatial information provided by infrared imaging allow continuous temperature dependence of thermal conductivity to be derived with high accuracy. This method has the potential to determine thermal conductivities of multiple samples at high throughput, and to derive thermal conductivity along different crystal orientation in a thermally anisotropic system.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

DiSalvo, F. J. , 1999, “Thermoelectric Cooling and Power Generation,” Science, 285(5428), pp. 703–706. [CrossRef] [PubMed]
Xiao, M. , Feng, B. , and Gong, K. , 2002, “Preparation and Performance of Shape Stabilized Phase Change Thermal Storage Materials With High Thermal Conductivity,” Energy Convers. Manage., 43(1), pp. 103–108. [CrossRef]
Sarı, A. , and Karaipekli, A. , 2007, “Thermal Conductivity and Latent Heat Thermal Energy Storage Characteristics of Paraffin/Expanded Graphite Composite as Phase Change Material,” Appl. Therm. Eng., 27(8), pp. 1271–1277. [CrossRef]
Fan, L. , and Khodadadi, J. M. , 2011, “Thermal Conductivity Enhancement of Phase Change Materials for Thermal Energy Storage: A Review,” Renewable Sustainable Energy Rev., 15(1), pp. 24–46. [CrossRef]
Balandin, A. A. , Ghosh, S. , Bao, W. , Calizo, I. , Teweldebrhan, D. , Miao, F. , and Lau, C. N. , 2008, “Superior Thermal Conductivity of Single-Layer Graphene,” Nano Lett., 8(3), pp. 902–907. [CrossRef] [PubMed]
Yu, R. , Salamon, M. , Lu, J. P. , and Lee, W. , 1992, “Thermal Conductivity of an Untwinned YBa2Cu3O7−δ Single Crystal and a New Interpretation of the Superconducting State Thermal Transport,” Phys. Rev. Lett., 69(9), p. 1431. [CrossRef] [PubMed]
Zeller, R. , and Pohl, R. , 1971, “Thermal Conductivity and Specific Heat of Noncrystalline Solids,” Phys. Rev. B, 4(6), p. 2029. [CrossRef]
Das, S. K. , Putra, N. , Thiesen, P. , and Roetzel, W. , 2003, “Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids,” J. Heat Transfer., 125(4), pp. 567–574. [CrossRef]
Berber, S. , Kwon, Y.-K. , and Tománek, D. , 2000, “Unusually High Thermal Conductivity of Carbon Nanotubes,” Phys. Rev. Lett., 84(20), pp. 4613–4616. [CrossRef] [PubMed]
Osman, M. A. , and Srivastava, D. , 2001, “Temperature Dependence of the Thermal Conductivity of Single-Wall Carbon Nanotubes,” Nanotechnol., 12(1), p. 21. [CrossRef]
Calmidi, V. , and Mahajan, R. , 1999, “The Effective Thermal Conductivity of High Porosity Fibrous Metal Foams,” ASME J. Heat Transfer, 121(2), pp. 466–471. [CrossRef]
Zhao, C. , 2012, “Review on Thermal Transport in High Porosity Cellular Metal Foams With Open Cells,” Int. J. Heat Mass Transfer, 55(13), pp. 3618–3632. [CrossRef]
Solórzano, E. , Reglero, J. , Rodríguez-Pérez, M. , Lehmhus, D. , Wichmann, M. D. , and Saja, J. , 2008, “An Experimental Study on the Thermal Conductivity of Aluminium Foams by Using the Transient Plane Source Method,” Int. J. Heat Mass Transfer, 51(25), pp. 6259–6267. [CrossRef]
Ohtori, N. , Oono, T. , and Takase, K. , 2009, “Thermal Conductivity of Molten Alkali Halides: Temperature and Density Dependence,” J. Chem. Phys., 130(4), p. 044505. [CrossRef] [PubMed]
Chester, G. , and Thellung, A. , 1961, “The Law of Wiedemann and Franz,” J. Phys., 77(5), p. 1005.
Beck, A. , 1957, “A Steady State Method for the Rapid Measurement of the Thermal Conductivity of Rocks,” J. Sci. Instrum., 34(5), p. 186. [CrossRef]
Hiroshi, H. , and Minoru, T. , 1986, “Equivalent Inclusion Method for Steady State Heat Conduction in Composites,” Int. J. Eng. Sci., 24(7), pp. 1159–1172. [CrossRef]
Dettmer, E. S. , Romenesko, B. M. , Charles, H. K. , Carkhuff, B. G. , and Merrill, D. J. , 1989, “Steady-State Thermal Conductivity Measurements of AlN and SiC Substrate Materials,” IEEE Trans. Compon., Hybrids. Manuf. Technol., 12(4), pp. 543–547. [CrossRef]
Fujii, M. , Zhang, X. , Xie, H. , Ago, H. , Takahashi, K. , Ikuta, T. , Abe, H. , and Shimizu, T. , 2005, “Measuring the Thermal Conductivity of a Single Carbon Nanotube,” Phys. Rev. Lett., 95(6), p. 065502. [CrossRef] [PubMed]
Yu, R. , Tea, N. , Salamon, M. , Lorents, D. , and Malhotra, R. , 1992, “Thermal Conductivity of Single Crystal C 60,” Phys. Rev. Lett., 68(13), p. 2050. [CrossRef] [PubMed]
Gustafsson, S. E. , 1991, “Transient Plane Source Techniques for Thermal Conductivity and Thermal Diffusivity Measurements of Solid Materials,” Rev. Sci. Instrum., 62(3), pp. 797–804. [CrossRef]
Baba, T. , and Ono, A. , 2001, “Improvement of the Laser Flash Method to Reduce Uncertainty in Thermal Diffusivity Measurements,” Meas. Sci. Technol., 12(12), p. 2046. [CrossRef]
Cahill, D. G. , 1990, “Thermal Conductivity Measurement From 30 to 750 K: The 3ω Method,” Rev. Sci. Instrum., 61(2), pp. 802–808. [CrossRef]
Mandadapu, K. K. , Jones, R. E. , and Papadopoulos, P. , 2009, “A Homogeneous Nonequilibrium Molecular Dynamics Method for Calculating Thermal Conductivity With a Three-Body Potential,” J. Chem. Phys., 130(20), p. 204106. [CrossRef] [PubMed]
Presley, M. A. , and Christensen, P. R. , 1997, “Thermal Conductivity Measurements of Particulate Materials 1. A Review,” J. Geophys. Res., 102(E3), pp. 6535–6549. [CrossRef]
Lu, L. , Yi, W. , and Zhang, D. , 2001, “3ω Method for Specific Heat and Thermal Conductivity Measurements,” Rev. Sci. Instrum., 72(7), pp. 2996–3003. [CrossRef]
Gustavsson, M. , Karawacki, E. , and Gustafsson, S. E. , 1994, “Thermal Conductivity, Thermal Diffusivity, and Specific Heat of Thin Samples From Transient Measurements With Hot Disk Sensors,” Rev. Sci. Instrum., 65(12), pp. 3856–3859. [CrossRef]
Kim, S. Y. , Koo, J.-M. , and Kuznetsov, A. V. , 2001, “Effect of Anisotropy in Permeability and Effective Thermal Conductivity on Thermal Performance of an Aluminum Foam Heat Sink,” Numer. Heat Transfer Part A: Appl., 40(1), pp. 21–36. [CrossRef]
Chang, Y. , Kang, C. , and Chen, D. J. , 1973, “The Use of Fundamental Green's Functions for the Solution of Problems of Heat Conduction in Anisotropic Media,” Int. J. Heat Mass Transfer, 16(10), pp. 1905–1918. [CrossRef]
Herr, S. A. , Beck, J. , McGrath, J. J. , Sahli, S. , and Aslam, M. , 1994, “Method of Measuring Doped-Diamond-Film Thermal Conductivity Using Infrared Thermography,” Proc. SPIE, 2151, pp. 26–35.
Miettinen, L. , Kekäläinen, P. , Merikoski, J. , Myllys, M. , and Timonen, J. , 2008, “In-Plane Thermal Diffusivity Measurement of Thin Samples Using a Transient Fin Model and Infrared Thermography,” Int. J. Thermophys., 29(4), pp. 1422–1438. [CrossRef]
Laskar, J. , Bagavathiappan, S. , Sardar, M. , Jayakumar, T. , Philip, J. , and Raj, B. , 2008, “Measurement of Thermal Diffusivity of Solids Using Infrared Thermography,” Mater. Lett., 62(17), pp. 2740–2742. [CrossRef]
Perkowski, Z. , 2011, “A Thermal Diffusivity Determination Method Using Thermography: Theoretical Background and Verification,” Int. J. Heat Mass Transfer, 54(9–10), pp. 2126–2135. [CrossRef]
Boué, C. , and Holé, S. , 2012, “Infrared Thermography Protocol for Simple Measurements of Thermal Diffusivity and Conductivity,” Infrared Phys. Technol., 55(4), pp. 376–379. [CrossRef]
Rossinsky, E. , and Müller-Plathe, F. , 2009, “Anisotropy of the Thermal Conductivity in a Crystalline Polymer: Reverse Nonequilibrium Molecular Dynamics Simulation of the δ Phase of Syndiotactic Polystyrene,” J. Chem. Phys., 130(13), p. 134905. [CrossRef] [PubMed]
Hou, S. , Zheng, W. , Duong, B. , and Su, M. , 2016, “All-Optical Decoder for Rapid and Noncontact Readout of Thermal Barcodes,” J. Phys. Chem. C, 120(38), pp. 22110–22114. [CrossRef]
Hou, S. , Wang, M. , Guo, S. , and Su, M. , 2017, “Photothermally Driven Refreshable Microactuators Based on Graphene Oxide Doped Paraffin,” ACS Appl. Mater. Interfaces, 9(31), pp. 26476–26482. [CrossRef] [PubMed]
Beaton, C. , and Hewitt, G. , 1989, Physical Property Data for the Design Engineer, Hemisphere Publication, New York, pp. 338–341.
Lambert, M. , and Fletcher, L. , 2002, “Thermal Contact Conductance of Non-Flat, Rough, Metallic Coated Metals,” ASME J. Heat Transfer, 124(3), pp. 405–412. [CrossRef]
Fletcher, L. , 1988, “Recent Developments in Contact Conductance Heat Transfer,” ASME J. Heat Transfer, 110(4b), pp. 1059–1070. [CrossRef]
Levenberg, K. , 1944, “A Method for the Solution of Certain Non-Linear Problems in Least Squares,” Q. Appl. Math., 2(2), pp. 164–168. [CrossRef]
Marchenko, V. , 1977, Sturm-Liouville Operators and Their Applications, KiIND, Kharkov, Ukraine.
Mears, D. E. , 1971, “Diagnostic Criteria for Heat Transport Limitations in Fixed Bed Reactors,” J. Catal., 20(2), pp. 127–131. [CrossRef]
Kanwal, R. , and Liu, K. , 1989, “A Taylor Expansion Approach for Solving Integral Equations,” Int. J. Math. Educ. Sci. Technol., 20(3), pp. 411–414. [CrossRef]
Powell, R. , Ho, C. Y. , and Liley, P. E. , 1966, Thermal Conductivity of Selected Materials, National Standard Reference Data System, Washington, DC.
Sanders, D. , and Walton, D. , 1977, “Effect of Magnon-Phonon Thermal Relaxation on Heat Transport by Magnons,” Phys. Rev. B, 15(3), p. 1489. [CrossRef]
Jin, R. , Onose, Y. , Tokura, Y. , Mandrus, D. , Dai, P. , and Sales, B. , 2003, “In-Plane Thermal Conductivity of Nd2CuO4: Evidence for Magnon Heat Transport,” Phys. Rev. Lett., 91(14), p. 146601. [CrossRef] [PubMed]
Visser, D. , Ramirez, A. , and Subramanian, M. , 1997, “Thermal Conductivity of Manganite Perovskites: Colossal Magnetoresistance as a Lattice-Dynamics Transition,” Phys. Rev. Lett., 78(20), p. 3947. [CrossRef]
Forsberg, C. , and Domoto, G. , 1972, “Thermal-Radiation Properties of Thin Metallic Films on Dielectrics,” ASME J. Heat Transfer, 94(4), pp. 467–472. [CrossRef]
Domoto, G. , and Tien, C. L. , 1970, “Thick Film Analysis of Radiative Transfer Between Parallel Metallic Surfaces,” ASME J. Heat Transfer, 92(3), pp. 399–404. [CrossRef]

Figures

Grahic Jump Location
Fig. 5

Determination of temperature coefficient with experimental and simulation results in iron (a) and copper (b) system; measurement accuracy evaluation using 30, 35, and 40 °C isotherms in iron (c), and copper (d) system

Grahic Jump Location
Fig. 4

Infrared images of the iron surface during heating process

Grahic Jump Location
Fig. 3

Examples on time-dependent temperature profile on the surface of iron with temperature coefficient of α = 0.01 (a) and α = 0.1 (b); maximum temperature difference on the surface of iron (c), and copper (d)

Grahic Jump Location
Fig. 2

Temperature-dependent thermal conductivity of (a) iron and (b) copper with varied temperature coefficient; sensitivity coefficient of thermal conductivity as a function of temperature (c)

Grahic Jump Location
Fig. 1

Determination of thermal conductivity as a function of temperature using experimental measurement and numerical simulation (a); scheme of the thermal conductivity measurement system using edge-coated metal sheet (b)

Grahic Jump Location
Fig. 6

Comparison of thermal conductivity of pure iron (a) and pure copper (b) in this work with literature values [45]

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In