Choo,
K. S.
, and
Kim,
S. J.
, 2010, “
Heat Transfer and Fluid Flow Characteristics of Two-Phase Impinging Jets,” Int. J. Heat Mass Transfer,
53(25–26), pp. 5692–5699.

[CrossRef]
Parker,
R. R.
,
Klausner,
J. F.
, and
Mei,
R. W.
, 2012, “
Supersonic Two-Phase Impinging Jet Heat Transfer,” ASME J. Heat Transfer,
135(2), p. 022201.

[CrossRef]
Lu,
X.
,
John Chandar,
D. D.
,
Chen,
Y.
, and
Lou,
J.
, 2017, “
An Overlapping Domain Decomposition Based Near-Far Field Coupling Method for Wave Structure Interaction Simulations,” Coastal Eng.,
126, pp. 37–50.

[CrossRef]
Martinez Ferrer,
P. J.
,
Causon,
D. M.
,
Qian,
L.
,
Mingham,
C. G.
, and
Ma,
Z. H.
, 2016, “
A Multi-Region Coupling Scheme for Compressible and Incompressible Flow Solvers for Two-Phase Flow in a Numerical Wave Tank,” Comput. Fluids,
125, pp. 116–129.

[CrossRef]
Lugni,
C.
,
Brocchini,
M.
, and
Faltinsen,
O. M.
, 2006, “
Wave Impact Loads: The Role of the Flip-Through,” Phys. Fluids,
18(12), p. 122101.

[CrossRef]
Bullock,
G. N.
,
Obhrai,
C.
,
Peregrine,
D. H.
, and
Bredmose,
H.
, 2007, “
Violent Breaking Wave Impacts—Part1: Results From Large Regular Wave Tests on Vertical and Sloping Walls,” Coastal Eng.,
54(8), pp. 602–617.

[CrossRef]
Wu,
J. Y.
,
Utturkar,
Y.
, and
Shyy,
W.
, 2003, “
Assessment of Modeling Strategies for Cavitating Flow around a Hydrofoil,” Fifth International Symposium on Cavitation, Osaka, Japan, Nov. 1–5.

Lindau,
J. W.
,
Boger,
D. A.
,
Medvitz,
R. B.
, and
Kunz, R. F.
, 2005, “
Propeller Cavitation Breakdown Analysis,” ASME J. Fluids Eng.,
127(5), pp. 995–1002.

[CrossRef]
Luo,
X. W.
,
Ji,
B.
,
Peng,
X. X.
,
Xu, H.
, and
Nishi, M.
, 2012, “
Numerical Simulation of Cavity Shedding From a Three-Dimensional Twisted Hydrofoil and Induced Pressure Fluctuation by Large-Eddy Simulation,” ASME J. Fluids Eng.,
134(4), p. 041202.

[CrossRef]
Miller,
S. T.
,
Jasak,
H.
,
Boger,
D. A.
,
Paterson,
E. G.
, and
Nedungadi,
A.
, 2013, “
A Pressure-Based, Compressible, Two-Phase Flow Finite Volume Method for Underwater Explosions,” Comput. Fluids,
87, pp. 132–143.

[CrossRef]
Saito,
Y.
,
Takami,
R.
,
Nakamori,
I.
, and
Ikohagi, I.
, 2007, “
Numerical Analysis of Unsteady Behavior of Cloud Cavitation Around a NACA0015 Foil,” Comput. Mech.,
40(1), pp. 85–96.

[CrossRef]
Zhang,
L. X.
, and
Khoo,
B. C.
, 2014, “
Dynamics of Unsteady Cavitating Flow in Compressible Two-Phase Fluid,” Ocean Eng.,
87, pp. 174–184.

[CrossRef]
Tseng,
C. C.
, and
Shyy,
W.
, 2010, “
Modeling for Isothermal and Cryogenic Cavitation,” Int. J. Heat Mass Transfer,
53(1–3), pp. 513–525.

[CrossRef]
Arndt,
R. E. A.
, 2012, “
Some Remarks on Hydrofoil Cavitation,” J. Hydrodyn.,
24(3), pp. 305–314.

[CrossRef]
Arndt,
R. E. A.
, 2012, “
Cavitation Research From an International Perspective,” IOP Conf. Ser.: Earth Environ. Sci.,
15, p. 012002.

Morgut,
M.
,
Nobile,
E.
, and
Bilus,
I.
, 2011, “
Comparison of Mass Transfer Models for the Numerical Prediction of Sheet Cavitation Around a Hydrofoil,” Int. J. Multiphase Flow,
37(6), pp. 620–626.

[CrossRef]
Kubota,
A.
,
Kato,
H.
, and
Yamaguchi,
H.
, 1992, “
A New Modelling of Cavitating Flows: A Numerical Study of Unsteady Cavitation on a Hydrofoil Section,” J. Fluid Mech.,
240(1), pp. 59–96.

[CrossRef]
Gopalan,
S.
, and
Katz,
J.
, 2000, “
Flow Structure and Modeling Issues in the Closure Region of Attached Cavitation,” Phys. Fluids,
12(4), pp. 895–911.

[CrossRef]
Senocak,
I.
, and
Shyy,
W.
, 2002, “
Evaluations of Cavitation Models for Navier-Stokes Computations,” ASME Paper No. FEDSM2002-31011.

Kunz,
R. F.
,
Boger,
D. A.
,
Stinebring,
D. R.
,
Chyczewski,
T. S.
,
Lindau,
J. W.
,
Gibeling,
H. J.
,
Venkateswaran,
S.
, and
Govindan,
T. R.
, 2000, “
A Preconditioned Navier-Stokes Method for Two-Phase Flows With Application to Cavitation Prediction,” Comput. Fluids,
29(8), pp. 849–875.

[CrossRef]
Singhal,
A. K.
,
Athavale,
M. M.
,
Huiying,
L.
, and
Yu,
J.
, 2002, “
Mathematical Basis and Validation of the Full Cavitation Model,” ASME J. Fluids Eng.,
124(3), pp. 617–624.

[CrossRef]
Merkle,
C. L.
,
Feng,
J. Z.
, and
Buelow,
P. E. O.
, 1992, “
Computational Modeling of the Dynamics of Sheet Cavitation,” Third International Symposium on Cavitation, Grenoble, France, Apr. 7–10.

Senocak,
I.
, and
Shyy,
W.
, 2002, “
A Pressure-Based Method for Turbulent Cavitating Flow Computations,” J. Comput. Phys.,
176(2), pp. 363–383.

[CrossRef]
Baer,
M. R.
, and
Nunziato,
J. W.
, 1986, “
A Two-Phase Mixture Theory for the Deflagration-to-Detonation Transition (DDT) in Reactive Granular Materials,” Int. J. Multiphase Flows,
12(6), pp. 861–889.

[CrossRef]
Saurel,
R.
, and
Abgrall,
R.
, 1999, “
A Multiphase Godunov Method for Compressible Multi-Fluid and Multiphase Flows,” J. Comput. Phys.,
150(2), pp. 425–467.

[CrossRef]
Zein,
A.
,
Hantke,
M.
, and
Warnecke,
G.
, 2010, “
Modeling Phase Transition for Compressible Two-Phase Flows Applied to Metastable Liquids,” J. Comput. Phys.,
229(8), pp. 2964–2998.

[CrossRef]
Murrone,
A.
, and
Guillard,
H.
, 2005, “
A Five-Equation Reduced Model for Compressible Two-Phase Flow Problems,” J. Comput. Phys.,
202(2), pp. 664–698.

[CrossRef]
Petitpas,
F.
,
Franquet,
E.
,
Saurel,
R.
, and
Le Metayer,
O.
, 2007, “
A Relaxation–Projection Method for Compressible Flows—Part II: Artificial Heat Exchanges for Multiphase Shocks,” J. Comput. Phys. Arch.,
225(2), pp. 2214–2248.

[CrossRef]
Venkateswaran,
S.
,
Lindau,
J. W.
,
Kunz,
R. F.
, and
Merkle, C. L.
, 2002, “
Computation of Multiphase Mixture Flows With Compressiblility Effects,” J. Comput. Phys,
180(1), pp. 54–77.

[CrossRef]
Keshtiban,
I. J.
,
Belblidia,
F.
, and
Webster,
M. F.
, 2004, “
Compressible Flow Solvers for Low Mach Number Flows—A Review,” Int. J. Numer. Methods Fluids,
23, pp. 77–103.

Patankar,
S. V.
, 1980, Numerical Heat Transfer and Fluid Flow,
Hemishpere,
New York.

Chorin,
A. J.
, 1967, “
A Numerical Method for Solving Incompressible Viscous Flow Problems,” J. Comput. Phys.,
2(1), pp. 12–26.

[CrossRef]
Karki,
K.
, and
Patankar,
S.
, 1989, “
Pressure Based Calculation Procedure for Viscous Flows at All Speeds in Arbitrary Configurations,” AIAA J.,
27(9), pp. 1167–1178.

[CrossRef]
Issa,
R. I.
, 1986, “
Solution of the Implicitly Discretized Fluid Flow Equations by Operator Splitting,” J. Comput. Phys.,
62(1), pp. 40–65.

[CrossRef]
Lu,
X.
,
Kumar,
P.
,
Bahuguni,
A.
, and
Wu,
Y. L.
, 2014, “
A CFD Study of Focused Extreme Wave Impact on Decks of Offshore Structures,” ASME Paper No. OMAE2014-23804.

Mostafa Ghiaasiaan,
S.
, 2011, Convective Heat and Mass Transfer, Cambridge University Press, Cambridge, UK, pp. 24–26.

[CrossRef]
Haider,
J.
, 2013, “
Numerical Modelling of Evaporation and Condensation Phenomena,” Ph.D. thesis, Universität Stuttgart, Stuttgart, Germany.

Richter,
O.
,
Turnow,
J.
,
Kornev,
N.
, and
Hassel,
E.
, 2017, “
Numerical Simulation of Casting Processes: Coupled Mould Filling and Solidification Using VOF and Enthalpy-Porosity Method,” Heat Mass Transfer,
53(6), pp. 1957–1969.

[CrossRef]
Utturkar,
Y.
, 2005, “
Computational Modeling of Thermodynamic Effects in Cryogenic Cavitation,” Ph.D. dissertation, University of Florida, Gainesville, FL.

Samkhaniani,
N.
, and
Ansari,
M. R.
, 2017, “
The Evaluation of the Diffuse Interface Method for Phase Change Simulations Using OpenFOAM,” Heat Transfer—Asian Res.,
46(8), pp. 1173–1203.

Kunkelmann,
C.
, 2011, “
Numerical Modeling and Investigation of Boiling Phenomena,” Ph.D. dissertation, Universitäts Darmstadt, Darmstadt, Germany.

Zwart,
P. J.
, 2005, “
Numerical Modelling of Free Surface Flows and Cavitating Flows Industrial CFD Applications of Free Surface and Cavitating Flows,” Course, Industrial Two-Phase Flow CFD, Rhode Saint Genese, Belgium, p. 8.

Schnerr,
G. H.
, and
Sauer,
J.
, 2001, “
Physical and Numerical Modeling of Unsteady Cavitation Dynamics,” Fourth International Conference on Multiphase Flow (ICMF), New Orleans, LA, May 27–June 1.

Vinze,
R.
,
Chandel,
S.
,
Limaye,
M. D.
, and
Prabhu,
S. V.
, 2016, “
Effect of Compressibility and Nozzle Configuration on Heat Transfer by Impinging Air Jet Over a Smooth Plate,” Appl. Therm. Eng.,
101(25), pp. 293–307.

[CrossRef]
Mottyll,
S.
, and
Skoda,
R.
, 2016, “
Numerical 3D Flow Simulation of Ultrasonic Horns With Attached Cavitation Structures and Assessment of Flow Aggressiveness and Cavitation Erosion Sensitive Wall Zones,” Ultrason. Sonochem.,
31, pp. 570–589.

[CrossRef] [PubMed]
Žnidarčič,
A.
,
Mettin,
R.
,
Cairos,
C.
, and
Dular,
M.
, 2014, “
Attached Cavitation at a Small Diameter Ultrasonic Horn Tip,” Phys. Fluids,
26(2), p. 023304.

[CrossRef]
Mottyll,
S.
,
Muller,
S.
,
Niederhofer,
P.
,
Hussong,
J.
,
Huth,
S.
, and
Skoda,
R.
, 2014, “
Analysis of the Cavitating Flow Induced by an Ultrasonic Horn—Numerical 3D Simulation for the Analysis of Vapour Structures and the Assessment of Erosion-Sensitive Areas,” EPJ Web Conf.,
67, p. 02078.

[CrossRef]
Franc,
J. P.
, and
Michel,
J. M.
, 2004, Fundamentals of Cavitation, Fluid Mechanics and Its Applications, Vol.
76,
Kluwer Academic Publishers,
Dordrecht, The Netherlands.

Schmidt,
S. J.
,
Thalhamer,
M.
, and
Schnerr,
G. H.
, 2009, “
Inertia Controlled Instability and Small Scale Structures of Sheet and Cloud Cavitation,” Seventh International Symposium on Cavitation (CAV), Ann Arbor, MI, Aug. 17–22.

Žnidarčič,
A.
,
Metti,
R.
, and
Dular,
M.
, 2015, “
Modeling Cavitation in a Rapidly Changing Pressure Field—Application to a Small Ultrasonic Horn,” Ultrason. Sonochem.,
22, pp. 482–492.

[CrossRef] [PubMed]