A two-year study was conducted to engage undergraduate mechanical engineering students to approach heat transfer education in an active, hands-on manner and excite them to pursue research and graduate studies in the field. Physical workshops were designed and implemented into junior level heat transfer classes, allowing students to feel and observe heat transfer using heat flux and temperature sensors that provided real-time data. These instruments, coupled with open-ended, challenge-based pedagogy, provided opportunities for students to explore important heat transfer concepts, such as the differences between heat and temperature. The conceptual knowledge of the students was assessed through concept-specific questions. These results were compared to those of a control group who took the traditional lecture without the workshops. The results yielded significantly higher scores for the experimental group in the first year but much less of a difference in the second year, which added video-enhanced workshops in place of the purely hands-on workshops. In addition to concept questions, surveys taken by the students reveal that the students much preferred the workshops over not having them. They also believed the workshops strongly enhanced their learning by giving them a real, hands-on experience.