0
Research Papers: Heat Transfer in Manufacturing

Numerically Optimizing the Distribution of the Infrared Radiative Energy on a Surface of a Thermoplastic Sheet Surface

[+] Author and Article Information
Kahina Bachir Cherif

Département des Sciences Appliquées,
Université du Québec à Chicoutimi,
Saguenay, QC G7H 2B1, Canada
e-mail: Kahina.Bachir-Cherif1@uqac.ca

Djamal Rebaine

Département d'Informatique et de Mathématique,
Université du Québec à Chicoutimi,
Saguenay, QC G7H 2B1, Canada
e-mail: Djamal_Rebaine@uqac.ca

Fouad Erchiqui

École de Génie,
Université du Québec en Abitibi-Témiscamingue,
Rouyn-Noranda, QC G9X 5E4, Canada
e-mail: Fouad.Erchiqui@uqat.ca

Issouf Fofana

Département des Sciences Appliquées,
Université du Québec à Chicoutimi,
Saguenay, QC G7H 2B1, Canada
e-mail: Issouf_Fofana@uqac.ca

Nabil Nahas

King Fahd University of Petroleum and Minerals,
Dhahran, Saudi Arabia
e-mail: Nabil_Nahas@hotmail.com

1Corresponding author.

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF HEAT TRANSFER. Manuscript received September 18, 2016; final manuscript received April 9, 2018; published online June 7, 2018. Assoc. Editor: Ali Khounsary.

J. Heat Transfer 140(10), 102101 (Jun 07, 2018) (7 pages) Paper No: HT-16-1590; doi: 10.1115/1.4039990 History: Received September 18, 2016; Revised April 09, 2018

This paper addresses the problem of distributing uniformly the energy flux intercepted by a thermoplastic sheet surface during the infrared radiation. To do so, we discretized this problem and then formulated it as an integer linear programming problem, for which we applied two meta-heuristic algorithms namely the simulated annealing algorithm (SA) and harmony search algorithm (HSA), in order to minimize the corresponding objective function. The results produced by the numerical study we conducted on the performance of both algorithms are presented and discussed.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Schmidt, F. , Le, M. Y. , and Monteix, S. , 2003, “ Modelling of Infrared Heating of Thermoplastic Sheet Used in Thermoforming Process,” J. Mater. Process. Technol., 143(1), pp. 225–231. [CrossRef]
Monteix, S. , Schmidt, Y. , Le Maoult, Y. , Ben Yedder, R. , Diraddo, R. W. , and Laroche, D. , 2001, “ Experimental Study and Numerical Simulation of Perform or Sheet Exposed to Infrared Radiative Heating,” J. Mater. Process. Technol., 119(1–3), pp. 90–97. [CrossRef]
Burkard, R. , Dell'Amico, M. , and Martello, S. , 2012, Assignment Problems, Society for Industrial and Applied Mathematics, Philadelphia, PA. [CrossRef]
Erchiqui, F. , Nahas, N. , Nourelfath, M. , and Souli, M. , 2011, “ A Metaheuristic Algorithms for Optimization of Infrared Heating Stage of the Thermoforming Process,” Int. J. Metaheuristics, 1(3), pp. 199–221. [CrossRef]
Bachir, C. K. , Rebaine, D. , Erchiqui, F. , and Fofana, I. , 2015, “ Metaheuristics as a Solving Approach for the Infrared Heating in the Thermoforming Process,” Université de Montréal, Montréal, QC, Canada, Technical Report No. GERAD-G-2015-139.
Modest, M. , 2013, Radiative Heat Transfer, 3rd ed., Elsevier, Oxford, UK.
Reddy, J. , 1993, An Introduction to the Finite Element Method, McGraw-Hill, New York.
Garcia, D. , Burret, T. , and Boutaous, M. , 2006, “ Procédé De Thermoformage: Simulation De La Phase De La Mise En Température,” Matér. Tech., 94(5), pp. 355–370. [CrossRef]
Kyun Lee, J. E. , Virkler, T. L. , and Scott, C. E. , 2001, “ Influence of Initial Sheet Temperature on ABS Thermoforming,” J. Polym. Eng. Sci., 41(10), pp. 1830–1844. [CrossRef]
Hertz, A. , 2005, “ Les Méta-Heuristiques: Quelques Conseils Pour En Faire Un Bon Usage,” Université de Montréal, Montréal, QC, Canada, Technical Report No. GERAD G-2005-03.
Koulmas, C. , Antony, S. R. , and John, R. , 1994, “ A Survey of Simulated Annealing Applications to Operations Research Problems,” Omega Int. J. Manage. Sci., 22(1), pp. 41–56. [CrossRef]
Zong, W. , 2006, “ Improved Harmony Search from Ensemble of Music Players,” Tenth International Conference, Bournemouth, UK, Oct. 9–11, pp. 86–93.
Geem, Z. W. , 2008, “ Novel Derivative of Harmony Search Algorithm for Discrete Design Variables,” Appl. Math. Comput., 199(1), pp. 223–230.
Geem, Z. W. , Kim, J. H. , and Loganathan, G. V. , 2001, “ A New Heuristic Optimization Algorithm: Harmony Search,” Simulation, 76(2), pp. 60–68. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Heating stage: thermoforming process

Grahic Jump Location
Fig. 3

Influence of parameter PAR

Grahic Jump Location
Fig. 4

Influence of parameter HMCR

Grahic Jump Location
Fig. 5

Influence of parameter HMS

Grahic Jump Location
Fig. 6

Distribution of the IR-energy intercepted by the thermoplastic sheet: (a) before optimization and (b) after optimization

Grahic Jump Location
Fig. 7

Distribution of the IR-energy intercepted by the thermoplastic sheet: (a) before optimization and (b) after optimization

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In