0
Research Papers: Melting and Solidification

A Phenomenological Model for the Solidification of Eutectic and Hypoeutectic Alloys Including Recalescence and Undercooling

[+] Author and Article Information
M. Chiumenti

International Center for Numerical Methods in
Engineering (CIMNE),
Universitat Politècnica de Catalunya (UPC),
Barcelona 08034, Spain
e-mail: michele@cimne.upc.edu

M. Cervera, E. Salsi, A. Zonato

International Center for Numerical Methods in
Engineering (CIMNE),
Universitat Politècnica de Catalunya (UPC),
Barcelona 08034, Spain

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF HEAT TRANSFER. Manuscript received March 10, 2017; final manuscript received April 9, 2018; published online May 7, 2018. Assoc. Editor: Gennady Ziskind.

J. Heat Transfer 140(8), 082301 (May 07, 2018) (12 pages) Paper No: HT-17-1133; doi: 10.1115/1.4039991 History: Received March 10, 2017; Revised April 09, 2018

In this work, a novel phenomenological model is proposed to study the liquid-to-solid phase change of eutectic and hypoeutectic alloy compositions. The objective is to enhance the prediction capabilities of the solidification models based on a-priori definition of the solid fraction as a function of the temperature field. However, the use of models defined at the metallurgical level is avoided to minimize the number of material parameters required. This is of great industrial interest because, on the one hand, the classical models are not able to predict recalescence and undercooling phenomena, and, on the other hand, the complexity as well as the experimental campaign necessary to feed most of the microstructure models available in the literature make their calibration difficult and very dependent on the chemical composition and the treatment of the melt. Contrarily, the proposed model allows for an easy calibration by means of few parameters. These parameters can be easily extracted from the temperature curves recorded at the hot spot of the quick cup test, typically used in the differential thermal analysis (DTA) for the quality control of the melt just before pouring. The accuracy of the numerical results is assessed by matching the temperature curves obtained via DTA of eutectic and hypoeutectic alloys. Moreover, the model is validated in more complex casting experiments where the temperature is measured at different thermocouple locations and the metallurgical features such as grain size and nucleation density are obtained from an exhaustive micrography campaign. The remarkable agreement with the experimental evidence validates the predicting capabilities of the proposed model.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Morgan, K. , Lewis, R. W. , and Zienkiewicz, O. C. , 1978, “An Improved Algorithm for Heat Conduction Problems With Phase Change,” Int. J. Numer. Methods Eng., 12(7), pp. 1191–1195. [CrossRef]
Clyne, T. W. , 1982, “The Use of Heat Flow Modeling to Explore Solidification Phenomena,” Metall. Trans. B, 13(3), pp. 471–478. [CrossRef]
Rappaz, M. , 1989, “Modelling of Microstructure Formation in Solidification Processes,” Int. Mater. Rev., 34(1), pp. 93–123. [CrossRef]
Crowley, A. B. , 1978, “Numerical Solution of Stefan Problems,” Int. J. Heat Mass Transfer, 21(2), pp. 215–219. [CrossRef]
Desbiolles, J. , Droux, J. , Rappaz, J. , and Rappaz, M. , 1987, “Simulation of Solidification of Alloys by the Finite Element Method,” Comput. Phys. Rep., 6(1–6), pp. 371–383. [CrossRef]
Shamsundar, N. , and Sparrow, E. , 1975, “Analysis of Multidimensional Conduction Phase Change Via the Enthalpy Model,” ASME J. Heat Transfer, 97(3), pp. 333–340. [CrossRef]
Rolph, D. , and Bathe, K. , 1982, “An Efficient Algorithm for Analysis of Nonlinear Heat Transfer With Phase Changes,” Int. J. Numer. Methods Eng., 18(1), pp. 119–134. [CrossRef]
Chen, I. G. , and Stefanescu, D. M. , 1984, “Computer-Aided Differential Thermal Analysis of Spheroidal and Compacted Graphite Cast Irons,” AFS Trans., 92, pp. 947–964. https://www.researchgate.net/publication/260086364_Computer-Aided_Differential_Thermal_Analysis_of_Spheroidal_and_Compacted_Graphite_Cast_Irons
Oliveira, M. J. , Malheiros, L. F. , and Ribeiro, C. A. , 1999, “Evaluation of the Heat of Solidification of Cast Irons From Continuous Cooling Curves,” J. Mater. Process. Technol., 92–93, pp. 25–30. [CrossRef]
Bower, T. F. , Brody, H. D. , and Flemings, M. C. , 1966, “Measurements of Solute Redistribution in Dendritic Solidification,” Trans. Metall. Soc. AIME, 236, pp. 624–633. http://www.onemine.org/document/abstract.cfm?docid=26043&title=PART-V--Measurements-of-Solute-Redistribution-in-Dendritic-Solidification
Scheil, E. , 1942, “Comments on the Layer Crystal Formation,” Z. Metallkd., 34, pp. 70–72.
Oldfield, W. , 1966, “A Quantitative Approach to Casting Solidification: Freezing of Cast Iron,” ASM Trans., 59, pp. 945–959.
Stefanescu, D. M. , and Kanetkar, C. , 1985, Computer Simulation of Microstructural Evolution, D. J., Srolovitz , ed., The Minerals, Metals & Materials Society, Warrendale, PA, pp. 171–188.
Stefanescu, D. M. , Upadhya, G. , and Bandypadhyay, D. , 1990, “Heat Transfer-Solidification Kinetics Modeling of Solidification of Castings,” Metall. Trans., 21A(3), p. 997. [CrossRef]
Stefanescu, D. M. , 2001, “Microstructure Evolution,” Modeling for Casting and Solidification Processing, K.-O. Yu , ed., RMI Titanum Company, Niles, OH, pp. 123–187.
Thevoz, P. , Desbioles, L. , and Rappaz, M. , 1989, “Modeling of Equiaxed Microstructure Formation in Casting,” Metall. Trans. A, 20(2), pp. 311–322. [CrossRef]
Lesoult, G. , Castro, M. , and Lacaze, J. , 1998, “Solidification of Spheroidal Graphite Cast Irons—I: Physical Modelling,” Acta Mater., 46(3), pp. 983–995. [CrossRef]
Lacaze, J. , Castro, M. , and Lesoult, G. , 1998, “Solidification of Spheroidal Graphite Cast Irons—II: Numerical Simulation,” Acta Mater., 46(3), pp. 997–1110. [CrossRef]
Lacaze, J. , 1999, “Solidification of Spheroidal Graphite Cast Irons—III: Microsegregation Related Effects,” Acta Mater., 47(14), pp. 3779–3792. [CrossRef]
Wessen, M. , and Svensson, I. L. , 1996, “Modeling of Ferrite Growth in Nodular Cast Iron,” Metall. Mater. Trans. A, 27(8), pp. 2209–2220. [CrossRef]
Perez, E. , Celentano, D. , and Oñate, E. , 1996, “Simulacion del proceso de solidificacion de la fundicion gris considerando un modelo microestructural,” Third Congreso de Metodos Numericos en Ingenieria, Zaragoza, Spain, June 3–6.
Celentano, D. J. , and Cruchaga, M. , 1999, “A Thermally Coupled Flow Formulation With Microstructural Evolution for Hypoeutectic Cast-Iron Solidification,” Metall. Mater. Trans. B, 30(4), pp. 731–744. [CrossRef]
Celentano, D. J. , Cruchaga, M. , and Schulz, B. , 2005, “Thermal Microstructural Analysis of Grey Cast Iron Solidification: Simulation and Experimental Validation,” Int. J. Cast Met. Res., 18(4), pp. 237–247. [CrossRef]
Celentano, D. J. , Dardati, P. M. , Godoy, L. A. , and Boeri, R. E. , 2008, “Computational Simulation of Microstructure Evolution During Solidification of Ductile Cast Iron,” Int. J. Cast Met. Res., 21(6), pp. 416–426. [CrossRef]
Celentano, D. J. , Dardati, P. M. , Carazo, F. D. , and Godoy, L. A. , 2013, “Thermomechanical-Microstructural Modelling of Nodular Cast Iron Solidification,” Mater. Sci. Technol., 29(2), pp. 156–164. [CrossRef]
Cruchaga, M. , and Celentano, D. , 1998, “A Thermally Coupled Flow Formulation With Microstructural Phase-Change Effects,” Computational Mechanics, S. Idelsohn and E. Oñate , eds., International Centre for Numerical Methods in Engineering, Barcelona, Spain.
Dardati, P. M. , Godoy, L. A. , Cervetto, G. A. , and Paguaga, P. , 2005, “Micromechanics Simulation During the Solidification of SG Cast-Iron,” Rev. Int. Métodos Numér. Cálc. Dis. Ing., 21(4), pp. 327–344.
Dardati, P. M. , Godoy, L. A. , and Celentano, D. J. , 2006, “Microstructural Simulation of Solidification Process of Spheroidal-Graphite Cast Iron,” ASME J. Appl. Mech., 73(6), pp. 977–983. [CrossRef]
Carazo, F. , Dardati, M. , Celentano, D. , and Godoy, L. , 2012, “Thermo-Metallurgical Modeling of Nodular Cast Iron Cooling Process,” Metall. Mater. Trans. B, 43B(6), pp. 1579–1594. [CrossRef]
Wetterfall, S. , Friedricksson, H. , and Hillert, M. , 1972, “Solidification Process of Nodular Cast Iron,” J. Iron Steel Inst., 110, pp. 323–333.
Gandin, C. , and Rappaz, M. , 1994, “A Coupled Finite Element-Cellular Automaton Model for the Prediction of Dendritic Grain Structures in Solidification Processes,” Acta Metall. Mater., 42(7), pp. 2233–2246. [CrossRef]
Gandin, C. , and Rappaz, M. , 1997, “A 3D Cellular Automaton Algorithm for the Prediction of Dendritic Grain Growth,” Acta Mater., 45(5), pp. 2187–2195. [CrossRef]
Charbon, C. , and Rappaz, M. , 1997, Physical Metallurgy of Cast Iron V, G. Lesoult and J. Lacaze , eds., Scitec Publications, Uetikon-Zurich, Switzerland, pp. 453–460.
Mahin, K. W. , Hanson, K. , and Morris, J. W. , 1980, “Comparative Analysis of the Cellular and Johnson-Mehl Microstructures Through Computer Simulation,” Acta Metall., 28(4), pp. 443–453. [CrossRef]
Coussy, O. , 1995, Mechanics of Porous Media, Wiley, New York.
Cervera, M. , Oliver, J. , and Prato, T. , 1999, “Thermo-Chemo-Mechanical Model for Concrete—I: Hydration and Aging,” J. Eng. Mech., 125(9), pp. 1018–1027. [CrossRef]
Dantzig, J. A. , and Rappaz, M. , 2016, Solidification, 2nd ed., EPFL Press, Lausanne, Switzerland.
Cervera, M. , Agelet de Saracibar, C. , and Chiumenti, M. , 1999, “Thermo-Mechanical Analysis of Industrial Solidification Processes,” Int. J. Numer. Methods Eng., 46(9), pp. 1575–1591. [CrossRef]
Agelet de Saracibar, C. , Cervera, M. , and Chiumenti, M. , 1999, “On the Formulation of Coupled Thermoplastic Problems With Phase-Change,” Int. J. Plasticity, 15(1), pp. 1–34. [CrossRef]
Agelet de Saracibar, C. , Cervera, M. , and Chiumenti, M. , 2001, “On the Constitutive Modeling of Coupled Thermomechanical Phase-Change Problems,” Int. J. Plasticity, 17(12), pp. 1565–1622. [CrossRef]
Agelet de Saracibar, C. , Chiumenti, M. , and Cervera, M. , 2006, “Current Developments on the Coupled Thermomechanical Computational Modeling of Metal Casting Processes,” Int. J. Comp. Methods Mater. Sci., 6(1–2), pp. 1–11.
Chiumenti, M. , Agelet de Saracibar, C. , and Cervera, M. , 2008, “On the Numerical Modelling of the Thermo-Mechanical Contact for Metal Casting Analysis,” ASME J. Heat Transfer, 130(6), p. 061301.
Boeri, R. , 1989, “The Solidification of Ductile Cast Iron,” Ph.D. thesis, University of British Columbia, Vancouver, BC, Canada. https://open.library.ubc.ca/cIRcle/collections/ubctheses/831/items/1.0078465
Avrami, M. , 1939, “Kinetics of Phase Change—I: General Theory,” J. Chem. Phys., 7(12), pp. 1103–1112. [CrossRef]
Avrami, M. , 1940, “Kinetics of Phase Change—II: Transformation-Time Relations for Random Distribution of Nuclei,” J. Chem. Phys., 8(2), pp. 212–224. [CrossRef]
Avrami, M. , 1941, “Kinetics of Phase Change—III: Granulation, Phase Change, and Microstructure,” J. Chem. Phys., 9(2), pp. 177–184. [CrossRef]
Stefanescu, D. M. , 1996, “Methodologies for Modeling of Solidification Microstructure and Their Capabilities,” ISIJ Int., 35(6), pp. 637–650. [CrossRef]
Rivera, G. L. , Boeri, R. E. , and Sikora, J. A. , 2004, “Solidification of Gray Cast Iron,” Scr. Mater., 50(3), pp. 331–335. [CrossRef]
Cervera, M. , Agelet de Saracibar, C. , and Chiumenti, M. , 2002, “COMET: Coupled Mechanical and Thermal Analysis,” Data Input Manual, Version 5.0, International Centre for Numerical Methods in Engineering (CIMNE), Barcelona, Spain, Technical Report No. IT-308. http://www.cimne.com/comet/cvdata/cntr1/dtos/img/mdia/COMET_Data_Input_manual.pdf
Heroeus Electro-Nite, 2018, Thermal Analysis of Cast Iron, Heraeus Electro-Nite International N.V, Houthalen, Belgium. [PubMed] [PubMed]
ASM, 1988, ASM Metals Handbook: Casting, 9th ed., Vol. 15, ASM International, Materials Park, OH.
Salsi, E. , Squatrito, R. , Todaro, I. , and Tomesani, L. , 2014, “Process Modeling and Microstructure Prediction Validation of Sand Ductile Iron Castings, Advanced Sustainable Foundry,” 71st World Foundry Congress, Bilbao, Spain, May 19–21, pp. 1536–1543.
Ceschini, L. , Morri, A. , Morri, A. , Salsi, E. , Squatrito, R. , Todaro, I. , and Tomesani, L. , 2015, “Microstructure and Mechanical Properties of Heavy Section Ductile Iron Castings: Experimental and Numerical Evaluation of Effects of Cooling Rates,” Int. J. Cast Met. Res., 28(6), pp. 365–374. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Temperature evolution and its first derivative obtained from the DTA of a eutectic solidification process. Identification of the highlight temperatures used for the characterization of the eutectic solidification model.

Grahic Jump Location
Fig. 2

Solid fraction evolution as a function of the transformation rate parameter

Grahic Jump Location
Fig. 3

Solid fraction rate during the solidification process with or without considering the exponential term

Grahic Jump Location
Fig. 4

Temperature evolution and its first derivative obtained from the DTA of a hypoeutectic solidification process. Identification of the highlight temperatures used for the characterization of the hypoeutectic solidification model.

Grahic Jump Location
Fig. 5

Quick cup test geometry: dimensions in millimeters

Grahic Jump Location
Fig. 6

Quick cup test: eutectic ductile cast iron. Temperature evolution at the hot-spot during the solidification process.

Grahic Jump Location
Fig. 7

Quick cup test: hypoeutectic gray cast iron. Temperature evolution at the hot-spot during the solidification process.

Grahic Jump Location
Fig. 8

Y-shape test geometry. Dimensions (in mm) of the casting equipment. TCY denotes the thermocouple location.

Grahic Jump Location
Fig. 9

Y-shape test. Temperature evolution at the thermocouple location TCY during the solidification process: experimental measurement versus numerical result.

Grahic Jump Location
Fig. 10

Cubes test geometry. Dimensions (in mm) of the cubes in the casting experience.

Grahic Jump Location
Fig. 11

Cubes test: evolution of the temperature field during the solidification. Comparison between the experimental measurements and the numerical results for the cubes 1, 3, and 6.

Grahic Jump Location
Fig. 12

Cubes test microstructures. Experimental measurements and numerical result for microstructural main features (density of nodules and average grain radius) along a profile from the center to a vertex of cubes of 60, 100, 180 mm side.

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In