0
Research Papers: Radiative Heat Transfer

Inverse Estimation of Thermal Properties in a Semitransparent Graded Index Medium With Radiation-Conduction Heat Transfer

[+] Author and Article Information
Sina Khayyam

Mechanical Engineering Department,
Shahid Bahonar University of Kerman,
Kerman 76175-133, Iran

S. M. Hosseini Sarvari

Mechanical Engineering Department,
Shahid Bahonar University of Kerman,
Kerman 76175-133, Iran
e-mail: sarvari@uk.ac.ir

1Corresponding author.

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF HEAT TRANSFER. Manuscript received January 9, 2018; final manuscript received March 30, 2018; published online May 22, 2018. Assoc. Editor: Zhixiong Guo.

J. Heat Transfer 140(9), 092701 (May 22, 2018) (10 pages) Paper No: HT-17-1587; doi: 10.1115/1.4039992 History: Received January 09, 2018; Revised March 30, 2018

An inverse radiation-conduction analysis is performed for simultaneous estimation of the thermal properties in an absorbing, emitting, and linear-anisotropically scattering medium with spatially variable refractive index. The discrete ordinates method in conjugation with finite volume method is adopted to solve the direct problem. The conjugate gradient method (CGM) is employed to simultaneously estimate the conduction-radiation parameter, optical thickness, single scattering albedo, scattering phase function, and the wall emissivities from the knowledge of the exit radiation intensities over the boundaries. The effects of these parameters and the measurement errors on the precision of the inverse analysis are investigated. Results show that the proposed inverse approach can successfully retrieve the unknown parameters for different refractive index profiles.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Flach, G. P. , and Özişik, M. N. , 1989, “ Inverse Heat Conduction Problem of Simultaneously Estimating Spatially Varying Thermal Conductivity and Heat Capacity per Unit Volume,” Numer. Heat Transfer, Part A, 16(2), pp. 249–266. [CrossRef]
Neto, A. S. , and Özişik, M. N. , 1994, “ The Estimation of Space and Time Dependent Strength of a Volumetric Heat Source in a One-Dimensional Plate,” Int. J. Heat Mass Transfer, 37(6), pp. 909–915. [CrossRef]
Li, H. Y. , and Özişik, M. N. , 1993, “ Inverse Radiation Problem for Simultaneous Estimation of Temperature Profile and Surface Reflectivity,” J. Thermophys. Heat Transfer, 7(1), pp. 88–93. [CrossRef]
Neto, A. S. , and Özişik, M. N. , 1995, “ An Inverse Problem of Simultaneous Estimation of Radiation Scattering Phase Function, Albedo and Optical Thickness,” J, Quant. Spectrosc. Radiat. Transfer, 53(4), pp. 397–409. [CrossRef]
Neto, C. S. , and Neto, A. S. , 2003, “ Estimation of Optical Thickness, Single Scattering Albedo and Diffuse Reflectivities With a Minimization Algorithm Based on an Interior Points Method,” 17th International Congress of Mechanical Engineering (COBEM), São Paulo, Brazil, Nov. 10–14. http://www.abcm.org.br/anais/cobem/2003/html/pdf/COB03-1154.pdf
Hosseini Sarvari, S. M. , Howell, J. R. , and Mansouri, S. H. , 2003, “ A General Method for Estimation of Boundary Conditions Over the Surface of Shields Surrounded by Radiating Enclosures,” Numer. Heat Transfer, Part B, 44(1), pp. 25–43. [CrossRef]
Hosseini Sarvari, S. M. , 2007, “ Inverse Estimation of Radiative Source Term in Two-Dimensional Irregular Media,” Fifth Symposium on Radiative Heat Transfer, Bodrum, Turkey, June 17–22. http://old.ichmt.org/rad-07/Abstracts%20of%20Manuscripts/RAD-V-017-Abs.pdf
Hosseini Sarvari, S. M. , 2015, “ Inverse Reconstruction of Path-Length κ-Distribution in a Plane-Parallel Radiative Medium,” Numer. Heat Transfer, Part A, Appl., 68(3), pp. 336–354. [CrossRef]
Li, H. Y. , 1999, “ Estimation of Thermal Properties in Combined Conduction and Radiation,” Int. J. Heat Mass Transfer, 42(3), pp. 565–572. [CrossRef]
Hosseini Sarvari, S. M. , Howell, J. R. , and Mansouri, S. H. , 2003, “ Inverse Boundary Design Conduction-Radiation Problem in Irregular Two-Dimensional Domains,” Numer. Heat Transfer, Part B, 44(3), pp. 209–224. [CrossRef]
Hosseini Sarvari, S. M. , 2005, “ Inverse Determination of Heat Source Distribution in Conductive–Radiative Media With Irregular Geometry,” J. Quant. Spectrosc. Radiat. Transfer, 93(1–3), pp. 383–395. [CrossRef]
Verma, S. , and Balaji, C. , 2007, “ Multi-Parameter Estimation in Combined Conduction–Radiation From a Plane Parallel Participating Medium Using Genetic Algorithms,” Int. J. Heat Mass Transfer, 50(9–10), pp. 1706–1714. [CrossRef]
Das, R. , Mishra, S. C. , and Uppaluri, R. , 2008, “ Multiparameter Estimation in a Transient Conduction-Radiation Problem Using the Lattice Boltzmann Method and the Finite-Volume Method Coupled With the Genetic Algorithms,” Numer. Heat Transfer, Part A, 53(12), pp. 1321–1338. [CrossRef]
Das, R. , Mishra, S. C. , and Uppaluri, R. , 2009, “ Retrieval of Thermal Properties in a Transient Conduction–Radiation Problem With Variable Thermal Conductivity,” Int. J. Heat Mass Transfer, 52(11–12), pp. 2749–2758. [CrossRef]
Das, R. , Mishra, S. C. , and Uppaluri, R. , 2010, “ Inverse Analysis Applied to Retrieval of Parameters and Reconstruction of Temperature Field in a Transient Conduction–Radiation Heat Transfer Problem Involving Mixed Boundary Conditions,” Int. Commun. Heat Mass Transfer, 37(1), pp. 52–57. [CrossRef]
Chopade, R. P. , Agnihotri, E. , Singh, A. K. , Kumar, A. , Uppaluri, R. , Mishra, S. C. , and Mahanta, P. , 2011, “ Application of a Particle Swarm Algorithm for Parameter Retrieval in a Transient Conduction-Radiation Problem,” Numer. Heat Transfer, Part A, 59(9), pp. 672–692. [CrossRef]
Baghban, M. , Mansouri, S. H. , and Shams, Z. , 2014, “ Inverse Radiation-Conduction Estimation of Temperature-Dependent Emissivity Using a Combined Method of Genetic Algorithm and Conjugate Gradient,” J. Mech. Sci. Technol., 28(2), p. 739. [CrossRef]
Qi, H. , Niu, C. Y. , Gong, S. , Ren, Y. T. , and Ruan, L. M. , 2015, “ Application of the Hybrid Particle Swarm Optimization Algorithms for Simultaneous Estimation of Multi-Parameters in a Transient Conduction–Radiation Problem,” Int. J. Heat Mass Transfer, 83, pp. 428–440. [CrossRef]
Siegel, R. , and Spuckler, C. M. , 1992, “ Effect of Index of Refraction on Radiation Characteristics in a Heated Absorbing, Emitting, and Scattering Layer,” ASME J. Heat Transfer, 114(3), pp. 781–784. [CrossRef]
Siegel, R. , and Spuckler, C. M. , 1993, “ Variable Refractive Index Effects on Radiation in Semitransparent Scattering Multilayered Regions,” J. Thermophys. Heat Transfer, 7(4), pp. 624–630. [CrossRef]
Siegel, R. , and Spuckler, C. M. , 1993, “ Refractive Index Effects on Radiation in an Absorbing, Emitting, and Scattering Laminated Layer,” ASME J. Heat Transfer, 115(1), pp. 194–200. [CrossRef]
Abdallah, P. B. , and Le Dez, V. , 2000, “ Temperature Field Inside an Absorbing–Emitting Semi-Transparent Slab at Radiative Equilibrium With Variable Spatial Refractive Index,” J. Quant. Spectrosc. Radiat. Transfer, 65(4), pp. 595–608. [CrossRef]
Abdallah, P. B. , and Le Dez, V. , 2000, “ Thermal Emission of a Semi-Transparent Slab With Variable Spatial Refractive Index,” J. Quant. Spectrosc. Radiat. Transfer, 67(3), pp. 185–198. [CrossRef]
Abdallah, P. B. , and Le Dez, V. , 2000, “ Thermal Emission of a Two-Dimensional Rectangular Cavity With Spatial Affine Refractive Index,” J. Quant. Spectrosc. Radiat. Transfer, 66(6), pp. 555–569. [CrossRef]
Liu, L. H. , 2004, “ Discrete Curved Ray-Tracing Method for Radiative Transfer in an Absorbing–Emitting Semitransparent Slab With Variable Spatial Refractive Index,” J. Quant. Spectrosc. Radiat. Transfer, 83(2), pp. 223–228. [CrossRef]
Liu, L. H. , Tan, H. P. , and Yu, Q. Z. , 2003, “ Temperature Distributions in an Absorbing–Emitting–Scattering Semitransparent Slab With Variable Spatial Refractive Index,” Int. J. Heat Mass Transfer, 46(15), pp. 2917–2920. [CrossRef]
Lemonnier, D. , and Le Dez, V. , 2002, “ Discrete Ordinates Solution of Radiative Transfer Across a Slab With Variable Refractive Index,” J. Quant. Spectrosc. Radiat. Transfer, 73(2–5), pp. 195–204. [CrossRef]
Liu, L. H. , 2005, “ Finite Element Solution of Radiative Transfer Across a Slab With Variable Spatial Refractive Index,” Int. J. Heat Mass Transfer, 48(11), pp. 2260–2265. [CrossRef]
Liu, L. H. , Zhang, L. , and Tan, H. P. , 2006, “ Finite Element Method for Radiation Heat Transfer in Multi-Dimensional Graded Index Medium,” J. Quant. Spectrosc. Radiat. Transfer, 97(3), pp. 436–445. [CrossRef]
Liu, L. H. , 2006, “ Finite Volume Method for Radiation Heat Transfer in Graded Index Medium,” J. Thermophys. Heat Transfer, 20(1), pp. 59–66. [CrossRef]
Asllanaj, F. , and Fumeron, S. , 2010, “ Modified Finite Volume Method Applied to Radiative Transfer in 2D Complex Geometries and Graded Index Media,” J. Quant. Spectrosc. Radiat. Transfer, 111(2), pp. 274–279. [CrossRef]
Liu, L. H. , 2006, “ Meshless Method for Radiation Heat Transfer in Graded Index Medium,” Int. J. Heat Mass Transfer, 49(1–2), pp. 219–229. [CrossRef]
Liu, L. H. , Tan, J. Y. , and Li, B. X. , 2006, “ Meshless Approach for Coupled Radiative and Conductive Heat Transfer in One-Dimensional Graded Index Medium,” J. Quant. Spectrosc. Radiat. Transfer, 101(2), pp. 237–248. [CrossRef]
Krishna, N. A. , and Mishra, S. C. , 2006, “ Discrete Transfer Method Applied to Radiative Transfer in a Variable Refractive Index Semitransparent Medium,” J. Quant. Spectrosc. Radiat. Transfer, 102(3), pp. 432–440. [CrossRef]
Hosseini Sarvari, S. M. , 2016, “ A New Approach to Solve the Radiative Transfer Equation in Plane-Parallel Semitransparent Media With Variable Refractive Index Based on the Discrete Transfer Method,” Int. Commun. Heat Mass Transfer, 78, pp. 54–59. [CrossRef]
Hosseini Sarvari, S. M. , 2017, “ Variable Discrete Ordinates Method for Radiation Transfer in Plane-Parallel Semi-Transparent Media With Variable Refractive Index,” J. Quant. Spectrosc. Radiat. Transfer, 199, pp. 36–44. [CrossRef]
Tan, H. P. , Wang, P. Y. , and Xia, X. L. , 2000, “ Transient Coupled Radiation and Conduction in an Absorbing and Scattering Composite Layer,” J. Thermophys. Heat Transfer, 14(1), pp. 77–87. [CrossRef]
Abdallah, P. B. , and Le Dez, V. , 2000, “ Radiative Flux Field Inside an Absorbing–Emitting Semi-Transparent Slab With Variable Spatial Refractive Index at Radiative Conductive Coupling,” J. Quant. Spectrosc. Radiat. Transfer, 67(2), pp. 125–137. [CrossRef]
Xia, X. L. , Huang, Y. , Tan, H. P. , and Zhang, X. B. , 2002, “ Simultaneous Radiation and Conduction Heat Transfer in a Graded Index Semitransparent Slab With Gray Boundaries,” Int. J. Heat Mass Transfer, 45(13), pp. 2673–2688. [CrossRef]
Liu, L. H. , 2004, “ Inverse Radiative Problem in Semitransparent Slab With Variable Spatial Refractive Index,” J. Thermophys. Heat Transfer, 18(3), pp. 410–412. [CrossRef]
Namjoo, A. , Hosseini Sarvari, S. M. , Behzadmehr, A. , and Mansouri, S. H. , 2009, “ Inverse Radiation Problem of Temperature Distribution in One-Dimensional Isotropically Scattering Participating Slab With Variable Refractive Index,” J. Quant. Spectrosc. Radiat. Transfer, 110(8), pp. 491–505. [CrossRef]
Namjoo, A. , Hosseini Sarvari, S. M. , Lemonnier, D. , and Le Dez, V. , 2009, “ Estimation of Arbitrary Refractive Index Distribution in a One-Dimensional Semitransparent Graded Index Medium,” Computational Thermal Radiation in Participating Media III (Eurotherm83), Lisboa, Portugal, Apr. 15–17.
Wei, L. Y. , Qi, H. , Ren, Y. T. , Sun, J. P. , and Ruan, L. M. , 2017, “ Multi-Parameter Estimation in Semitransparent Graded-Index Media Based on Coupled Optical and Thermal Information,” Int. J. Therm. Sci., 113, pp. 116–129. [CrossRef]
Özişik, M. N. , and Orlande, H. R. B. , 2000, Inverse Heat Transfer, Taylor & Francis, New York.
Wirgin, A. , 2004, “ The Inverse Crim,” eprint arXiv: math-ph/0401050. https://arxiv.org/abs/math-ph/0401050
Kaipio, J. , and Somersalo, E. , 2007, “ Statistical Inverse Problems: Discretization, Model Reduction and Inverse Crimes,” J. Comput. Appl. Math., 198(2), pp. 493–504. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Schematic of the plane-parallel gray medium with variable refractive index

Grahic Jump Location
Fig. 2

Division of: (a) spatial domain and (b) angular domain

Grahic Jump Location
Fig. 3

Nondimensional temperature field in a semitransparent graded index medium with the boundary emissivities of (a) ε0=εL=1.0, (b) ε0=0.2, εL=1.0, and (c) ε0=1.0,  εL=0.2 and the refractive index distribution of (1) Eq. (31a), (2) Eq. (31b), and (3) Eq. (31c).

Grahic Jump Location
Fig. 4

Temperature field in a semitransparent graded index medium with the single scattering albedo of (a) ω=0.2 and (b) ω=0.8 and the refractive index distribution of (1) n(τ)=1.2+06(τ/τL) and (2) n(τ)=1.0

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In