Research Papers: Micro/Nanoscale Heat Transfer

Optimizing the Interfacial Thermal Conductance at Gold–Alkane Junctions From “First Principles”

[+] Author and Article Information
Jingjie Zhang

Department of Electrical and
Computer Engineering,
University of Virginia,
Charlottesville, VA 22904
e-mail: jz9wp@virginia.edu

Carlos A. Polanco

Department of Electrical and
Computer Engineering,
University of Virginia,
Charlottesville, VA 22904
e-mail: cap3fe@virginia.edu

Avik W. Ghosh

Department of Electrical and
Computer Engineering,
Department of Physics University of Virginia,
Charlottesville, VA 22904
e-mail: ag7rq@virginia.edu

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF HEAT TRANSFER. Manuscript received July 6, 2017; final manuscript received April 25, 2018; published online May 25, 2018. Assoc. Editor: Alan McGaughey.

J. Heat Transfer 140(9), 092405 (May 25, 2018) (9 pages) Paper No: HT-17-1399; doi: 10.1115/1.4040144 History: Received July 06, 2017; Revised April 25, 2018

We theoretically explore the influence of end-group chemistry (bond stiffness and mass) on the interfacial thermal conductance at a gold–alkane interface. We accomplish this using the nonequilibrium Green's function (NEGF) coupled with first principle parameters in density functional theory (DFT) within the harmonic approximation. Our results indicate that the interfacial thermal conductance is not a monotonic function of either chemical parameters but instead maximizes at an optimal set of mass and bonding strength. This maximum is a result of the interplay between the overlap in local density of states (LDOS) of the device and that in the contacts, as well as the phonon group velocity. We also demonstrate the intrinsic relationship between the diffusive mismatch model (DMM) and the properties from NEGF, and provide an approach to get DMM from first principles NEGF. By comparing the NEGF-based DMM conductance and range of conductance while altering the mass and bonding strength, we show that DMM provides an upper bound for elastic transport in this dimension-mismatched system. We thus have a prescription to enhance the thermal conductance of systems at low temperatures or at low dimensions where inelastic scattering is considerably suppressed.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.


Nitzan, A. , 2003, “ Electron Transport in Molecular Wire Junctions,” Science, 300(5624), pp. 1384–1389. [CrossRef] [PubMed]
Joachim, C. , Gimzewski, J. K. , and Aviram, A. , 2000, “ Electronics Using Hybrid-Molecular and Mono-Molecular Devices,” Nature, 408(6812), pp. 541–548. [CrossRef] [PubMed]
Xu, B. , and Tao, N. J. , 2003, “ Measurement of Single-Molecule Resistance by Repeated Formation of Molecular Junctions,” Science, 301(5637), pp. 1221–1223. [CrossRef] [PubMed]
Reddy, P. , Jang, S.-Y. , Segalman, R. A. , and Majumdar, A. , 2007, “ Thermoelectricity in Molecular Junctions,” Science, 315(5818), pp. 1568–1571. [CrossRef] [PubMed]
Baheti, K. , Malen, J. A. , Doak, P. , Reddy, P. , Jang, S.-Y. , Tilley, T. D. , Majumdar, A. , and Segalman, R. A. , 2008, “ Probing the Chemistry of Molecular Heterojunctions Using Thermoelectricity,” Nano Lett., 8(2), pp. 715–719. [CrossRef] [PubMed]
Tang, J. , Liu, H. , Zhitomirsky, D. , Hoogland, S. , Wang, X. , Furukawa, M. , Levina, L. , and Sargent, E. H. , 2012, “ Quantum Junction Solar Cells,” Nano Lett., 12(9), pp. 4889–4894. [CrossRef] [PubMed]
Ip, A. H. , Thon, S. M. , Hoogland, S. , Voznyy, O. , Zhitomirsky, D. , Debnath, R. , Levina, L. , Rollny, L. R. , Carey, G. H. , Fischer, A. , Kemp, K. W. , Kramer, I. J. , Ning, Z. , Labelle, A. J. , Chou, K. W. , Amassian, A. , and Sargent, E. H. , 2012, “ Hybrid Passivated Colloidal Quantum Dot Solids,” Nat. Nanotechnol., 7(9), pp. 577–582. [CrossRef] [PubMed]
Gather, M. C. , Köhnen, A. , and Meerholz, K. , 2011, “ White Organic Light-Emitting Diodes,” Adv. Mater., 23(2), pp. 233–248. [CrossRef] [PubMed]
O'Brien, P. J. , Shenogin, S. , Liu, J. , Chow, P. K. , Laurencin, D. , Mutin, P. H. , Yamaguchi, M. , Keblinski, P. , and Ramanath, G. , 2013, “ Bonding-Induced Thermal Conductance Enhancement at Inorganic Heterointerfaces Using Nanomolecular Monolayers,” Nat. Mater., 12(2), pp. 118–122. [CrossRef] [PubMed]
Losego, M. D. , Grady, M. E. , Sottos, N. R. , Cahill, D. G. , and Braun, P. V. , 2012, “ Effects of Chemical Bonding on Heat Transport Across Interfaces,” Nat. Mater., 11(6), pp. 502–506. [CrossRef] [PubMed]
Shen, M. , Evans, W. J. , Cahill, D. , and Keblinski, P. , 2011, “ Bonding and Pressure-Tunable Interfacial Thermal Conductance,” Phys. Rev. B, 84(19), p. 195432. [CrossRef]
Duda, J. C. , English, T. S. , Piekos, E. S. , Soffa, W. A. , Zhigilei, L. V. , and Hopkins, P. E. , 2011, “ Implications of Cross-Species Interactions on the Temperature Dependence of Kapitza Conductance,” Phys. Rev. B, 84(19), p. 193301. [CrossRef]
Zhang, L. , Keblinski, P. , Wang, J.-S. , and Li, B. , 2011, “ Interfacial Thermal Transport in Atomic Junctions,” Phys. Rev. B, 83(6), p. 064303. [CrossRef]
Chen, B. , and Zhang, L. , 2015, “ Optimized Couplers for Interfacial Thermal Transport,” J. Phys.: Condens. Matter, 27(12), p. 125401. [CrossRef] [PubMed]
Saltonstall, C. B. , Polanco, C. A. , Duda, J. C. , Ghosh, A. W. , Norris, P. M. , and Hopkins, P. E. , 2013, “ Effect of Interface Adhesion and Impurity Mass on Phonon Transport at Atomic Junctions,” J. Appl. Phys., 113(1), p. 013516. [CrossRef]
Hopkins, P. E. , Norris, P. M. , Tsegaye, M. S. , and Ghosh, A. W. , 2009, “ Extracting Phonon Thermal Conductance Across Atomic Junctions: Nonequilibrium Green's Function Approach Compared to Semiclassical Methods,” J. Appl. Phys., 106(6), p. 063503. [CrossRef]
Polanco, C. A. , Saltonstall, C. B. , Norris, P. M. , Hopkins, P. E. , and Ghosh, A. W. , 2013, “ Impedance Matching of Atomic Thermal Interfaces Using Primitive Block Decomposition,” Nanoscale Microscale Thermophys. Eng., 17(3), pp. 263–279. [CrossRef]
Klemens, P. G. , 1951, “ The Thermal Conductivity of Dielectric Solids at Low Temperatures (Theoretical),” Proc. R. Soc. A, 208(1092), pp. 108–133. [CrossRef]
Chalopin, Y. , Mingo, N. , Diao, J. , Srivastava, D. , and Volz, S. , 2012, “ Large Effects of Pressure Induced Inelastic Channels on Interface Thermal Conductance,” Appl. Phys. Lett., 101(22), p. 221903. [CrossRef]
Polanco, C. A. , Rastgarkafshgarkolaei, R. , Zhang, J. , Le, N. Q. , Norris, P. M. , and Ghosh, A. W. , 2017, “ Design Rules for Interfacial Thermal Conductance: Building Better Bridges,” Phys. Rev. B, 95(19), p. 195303. [CrossRef]
Hu, L. , Zhang, L. , Hu, M. , Wang, J.-S. , Li, B. , and Keblinski, P. , 2010, “ Phonon Interference at Self-Assembled Monolayer Interfaces: Molecular Dynamics Simulations,” Phys. Rev. B, 81(23), p. 235427. [CrossRef]
Taylor, E. , and Segal, D. , 2015, “ Quantum Bounds on Heat Transport Through Nanojunctions,” Phys. Rev. Lett., 114(22), p. 220401. [CrossRef] [PubMed]
Segal, D. , and Nitzan, A. , 2002, “ Heating in Current Carrying Molecular Junctions,” J. Chem. Phys., 117(8), pp. 3915–3927. [CrossRef]
Meier, T. , Menges, F. , Nirmalraj, P. , Hölscher, H. , Riel, H. , and Gotsmann, B. , 2014, “ Length-Dependent Thermal Transport Along Molecular Chains,” Phys. Rev. Lett., 113(6), p. 060801. [CrossRef] [PubMed]
Majumdar, S. , Sierra-Suarez, J. A. , Schiffres, S. N. , Ong, W.-L. , Higgs, C. F. , McGaughey, A. J. H. , and Malen, J. A. , 2015, “ Vibrational Mismatch of Metal Leads Controls Thermal Conductance of Self-Assembled Monolayer Junctions,” Nano Lett., 15(5), pp. 2985–2991. [CrossRef] [PubMed]
Yourdshahyan, Y. , and Rappe, A. M. , 2002, “ Structure and Energetics of Alkanethiol Adsorption on the Au(111) Surface,” J. Chem. Phys., 117(2), pp. 825–833. [CrossRef]
Vericat, C. , Vela, M. E. , Benitez, G. , Carro, P. , and Salvarezza, R. C. , 2010, “ Self-Assembled Monolayers of Thiols and Dithiols on Gold: New Challenges for a Well-Known System,” Chem. Soc. Rev., 39(5), p. 1805. [CrossRef] [PubMed]
Hayashi, T. , Morikawa, Y. , and Nozoye, H. , 2001, “ Adsorption State of Dimethyl Disulfide on Au(111): Evidence for Adsorption as Thiolate at the Bridge Site,” J. Chem. Phys., 114(17), pp. 7615–7621. [CrossRef]
Vargas, M. C. , Giannozzi, P. , Selloni, A. , and Scoles, G. , 2001, “ Coverage-Dependent Adsorption of CH3S and (CH3S)2 on Au(111): A Density Functional Theory Study,” J. Phys. Chem. B, 105(39), pp. 9509–9513. [CrossRef]
Rodriguez, J. A. , Dvorak, J. , Jirsak, T. , Liu, G. , Hrbek, J. , Aray, Y. , and González, C. , 2003, “ Coverage Effects and the Nature of the Metal-Sulfur Bond in S/Au(111): High-Resolution Photoemission and Density-Functional Studies,” J. Am. Chem. Soc., 125(1), pp. 276–285. [CrossRef] [PubMed]
Tachibana, M. , Yoshizawa, K. , Ogawa, A. , Fujimoto, H. , and Hoffmann, R. , 2002, “ Sulfur-Gold Orbital Interactions Which Determine the Structure of Alkanethiolate/Au(111) Self-Assembled Monolayer Systems,” J. Phys. Chem. B, 106(49), pp. 12727–12736. [CrossRef]
Venkataraman, L. , Klare, J. E. , Tam, I. W. , Nuckolls, C. , Hybertsen, M. S. , and Steigerwald, M. L. , 2006, “ Single-Molecule Circuits With Well-Defined Molecular Conductance,” Nano Lett., 6(3), pp. 458–462. [CrossRef] [PubMed]
Giannozzi, P. , Baroni, S. , Bonini, N. , Calandra, M. , Car, R. , Cavazzoni, C. , Ceresoli, D. , Chiarotti, G. L. , Cococcioni, M. , Dabo, I. , Dal Corso, A. , de Gironcoli, S. , Fabris, S. , Fratesi, G. , Gebauer, R. , Gerstmann, U. , Gougoussis, C. , Kokalj, A. , Lazzeri, M. , Martin-Samos, L. , Marzari, N. , Mauri, F. , Mazzarello, R. , Paolini, S. , Pasquarello, A. , Paulatto, L. , Sbraccia, C. , Scandolo, S. , Sclauzero, G. , Seitsonen, A. P. , Smogunov, A. , Umari, P. , and Wentzcovitch, R. M. , 2009, “ QUANTUM ESPRESSO: A Modular and Open-Source Software Project for Quantum Simulations of Materials,” J. Phys.: Condens. Matter, 21(39), p. 395502. [CrossRef] [PubMed]
Baroni, S. , de Gironcoli, S. , Dal Corso, A. , and Giannozzi, P. , 2001, “ Phonons and Related Crystal Properties From Density-Functional Perturbation Theory,” Rev. Mod. Phys., 73(2), pp. 515–562. [CrossRef]
Lynn, J. W. , Smith, H. G. , and Nicklow, R. M. , 1973, “ Lattice Dynamics of Gold,” Phys. Rev. B, 8(8), pp. 3493–3499. [CrossRef]
Dal Corso, A. , 2013, “ Ab Initio Phonon Dispersions of Transition and Noble Metals: Effects of the Exchange and Correlation Functional,” J. Phys.: Condens. Matter, 25(14), p. 145401. [CrossRef] [PubMed]
Tomkinson, J. , Parker, S. F. , Braden, D. A. , and Hudson, B. S. , 2002, “ Inelastic Neutron Scattering Spectra of the Transverse Acoustic Modes of the Normal Alkanes,” Phys. Chem. Chem. Phys., 4(5), pp. 716–721. [CrossRef]
Barrera, G. D. , Parker, S. F. , Ramirez-Cuesta, A. J. , and Mitchell, P. C. H. , 2006, “ The Vibrational Spectrum and Ultimate Modulus of Polyethylene,” Macromolecules, 39(7), pp. 2683–2690. [CrossRef]
Zhang, W. , Mingo, N. , and Fisher, T. S. , 2007, “ Simulation of Phonon Transport Across a Non-Polar Nanowire Junction Using an Atomistic Green's Function Method,” Phys. Rev. B, 76(19), p. 195429. [CrossRef]
Swartz, E. T. , and Pohl, R. O. , 1989, “ Thermal Boundary Resistance,” Rev. Mod. Phys., 61(3), pp. 605–668. [CrossRef]
Duda, J. C. , Hopkins, P. E. , Smoyer, J. L. , Bauer, M. L. , English, T. S. , Saltonstall, C. B. , and Norris, P. M. , 2010, “ On the Assumption of Detailed Balance in Prediction of Diffusive Transmission Probability During Interfacial Transport,” Nanoscale Microscale Thermophys. Eng., 14(1), pp. 21–33. [CrossRef]
Wang, Z. , Cahill, D. G. , Carter, J. A. , Koh, Y. K. , Lagutchev, A. , Seong, N.-H. , and Dlott, D. D. , 2008, “ Ultrafast Dynamics of Heat Flow Across Molecules,” Chem. Phys., 350(1–3), pp. 31–44. [CrossRef]
Kunc, K. , and Martin, R. M. , 1982, “ Ab Initio Force Constants of GaAs: A New Approach to Calculation of Phonons and Dielectric Properties,” Phys. Rev. Lett., 48(6), pp. 406–409. [CrossRef]
Parlinski, K. , Li, Z. Q. , and Kawazoe, Y. , 1997, “ First-Principles Determination of the Soft Mode in Cubic ZrO2,” Phys. Rev. Lett., 78(21), pp. 4063–4066. [CrossRef]
Sluiter, M. H. F. , Weinert, M. , and Kawazoe, Y. , 1999, “ Force Constants for Substitutional Alloys,” Phys. Rev. B, 59(6), pp. 4100–4111. [CrossRef]
Hautman, J. , and Klein, M. L. , 1989, “ Simulation of a Monolayer of Alkyl Thiol Chains,” J. Chem. Phys., 91(8), pp. 4994–5001. [CrossRef]
Klöckner, J. C. , Bürkle, M. , Cuevas, J. C. , and Pauly, F. , 2016, “ Length Dependence of the Thermal Conductance of Alkane-Based Single-Molecule Junctions: An Ab Initio Study,” Phys. Rev. B, 94(20), p. 205425.
Sun, T. , Wang, J. , and Kang, W. , 2013, “ Van Der Waals Interaction-Tuned Heat Transfer in Nanostructures,” Nanoscale, 5(1), pp. 128–133. [CrossRef] [PubMed]
Su, R. X. , Yuan, Z. Q. , Wang, J. , and Zheng, Z. G. , 2016, “ Interface-Facilitated Energy Transport in Coupled Frenkel-Kontorova Chains,” Front. Phys., 11(2), p. 114401.
Towns, J. , Cockerill, T. , Dahan, M. , Foster, I. , Gaither, K. , Grimshaw, A. , Hazlewood, V. , Lathrop, S. , Lifka, D. , Peterson, G. D. , Roskies, R. , Scott, J. R. , and Wilkins-Diehr, N. , 2014, “ XSEDE: Accelerating Scientific Discovery,” Comput. Sci. Eng., 16(5), pp. 62–74.


Grahic Jump Location
Fig. 1

(a) Stacking order of Au slab in (111) direction, the color difference represents the gold atoms in different layers; (b) top view of the gold (111) surface, the black lines highlight the simulation supercell; (c) schematic representation of the systems being considered

Grahic Jump Location
Fig. 2

(a) Phonon dispersion of Au compared with experimental data (red dots); (b) phonon dispersion of polyethylene compared with experimental data (red dots); (c) the number of modes of Au and polyethylene. The inset figure shows the MT of DMM taking the harmonic mean of modes from each side; (d) the conductance of Au–SAMs junction with NEGF-based DMM.

Grahic Jump Location
Fig. 3

Schematic diagram of left, device, and right regions of the alkane–gold junction in the NEGF simulation

Grahic Jump Location
Fig. 4

Tunable range of interfacial thermal conductance by varying the interface parameters compares to DMM conductance and the first principle optimized one

Grahic Jump Location
Fig. 5

The first principle NEGF result of the interfacial thermal conductance for the Au–thiol–alkane junctions and the Au–amine–alkane junctions. (a) The bonding strength of different end groups on different adhesion sites; (b) the corresponding interfacial thermal conductance. The error bars show the range of conductance when the initial tilting angle is varied between 10 deg and 30 deg.

Grahic Jump Location
Fig. 6

The stiffness of the bonding varied with adhesion distance, and the corresponding thermal conductance of Au–SAMs junction

Grahic Jump Location
Fig. 7

Variation of the thermal conductance with directly changing (a) the stiffness of the bonding and (b) the mass of the adhesion species

Grahic Jump Location
Fig. 8

(a) A structural sketch of the simple 3D–1D model; (b) the thermal conductance (in unit (W/K)) map with respect to end-group mass and stiffness of the interfacial bonding in the simple 3D–1D model

Grahic Jump Location
Fig. 9

Density of states of the 3D contact, 1D contact, and the device with different bonding strength (a) and end-group mass (b) as shown in Fig. 8(b) with square symbols and up triangle symbols, respectively. The shadowed areas in (c) and (d) show the averaged ODOS for the 3D and 1D contacts, dictating a DOS window for the DOS of the junctions; (e) and (f) show the corresponding transmission for each set of interfacial parameters.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In