0
Research Papers: Heat and Mass Transfer

The New Equations for “Rate-Determining Chemisorption of Coal”

[+] Author and Article Information
Cemil Koyunoğlu

Energy Institute,
Ayazaga Campus,
Istanbul Technical University,
Maslak, Istanbul 34469, Turkey;
EMS Energy Institute,
Coal Utilization Laboratory,
The Pennsylvania State University,
University Park, PA 16802
e-mail: ckoyunoglu@itu.edu.tr

1Corresponding author.

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF HEAT TRANSFER. Manuscript received October 30, 2017; final manuscript received June 19, 2018; published online July 23, 2018. Assoc. Editor: Ali Khounsary.

J. Heat Transfer 140(11), 112001 (Jul 23, 2018) (8 pages) Paper No: HT-17-1641; doi: 10.1115/1.4040610 History: Received October 30, 2017; Revised June 19, 2018

The purpose of the new formulas, Cml, CmlK, and CmlY, which express the slowest char combustion rate, is to show the controlling mechanism of single coal burning. Oxygen diffusion through the boundary layer (as a result of releasing volatile matter from coal) to the char surface is the slowest step rate and can also represent as the rate determining. This step has not yet been taken into account in the literature and may effect incomparable decisions between numerical and experimental results of coal combustion studies. In the 1920s, Wilhelm Nusselt found the coal combustion equation for a single coal, which is based on initial coal diameter, and its burning time, or Nusselt square law (NSL). Also, the burning constant in NSL expressed oxygen partial pressure and the ambient temperature level. Nevertheless, recent studies according to char combustion have explained the effect of coal density on char combustion. Consequently, to help understand the slowest rate of char combustion, NSL as well as ordinary char combustion equations can be used together to establish the rate-determining factor. For this purpose, in this study, the slowest step of the char reaction rate is given as “Cml” of stable position for single coal particle, “CmlK” and “CmlY” for a coal particle in a motion.

FIGURES IN THIS ARTICLE
<>
Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Williams, A. , 1994, “ The Diagnosis of Concerted Organic Mechanisms,” Chem. Soc. Rev., 23(2), pp. 93–100. [CrossRef]
Sposito, G. , 2005, The Surface Chemistry of Natural Particles, Oxford University Press, New York.
Cho, K.-B. , Hirao, H. , Shaik, S. , and Nam, W. , 2016, “ To Rebound or Dissociate? This Is the Mechanistic Question in C-H Hydroxylation by Heme and Nonheme Metal-Oxo Complexes,” Chem. Soc. Rev., 45(5), pp. 1197–1210. [CrossRef] [PubMed]
Guo, Z. , Liu, B. , Zhang, Q. , Deng, W. , Wang, Y. , and Yang, Y. , 2014, “ Recent Advances in Heterogeneous Selective Oxidation Catalysis for Sustainable Chemistry,” Chem. Soc. Rev., 43(10), pp. 3480–3524. [CrossRef] [PubMed]
Jiang, B. , Yang, M. , Xie, D. , and Guo, H. , 2016, “ Quantum Dynamics of Polyatomic Dissociative Chemisorption on Transition Metal Surfaces: Mode Specificity and Bond Selectivity,” Chem. Soc. Rev., 45(13), pp. 3621–3640. [CrossRef] [PubMed]
Sanna, A. , Uibu, M. , Caramanna, G. , Kuusik, R. , and Maroto-Valer, M. M. , 2014, “ A Review of Mineral Carbonation Technologies to Sequester CO2,” Chem. Soc. Rev., 43(23), pp. 8049–8080. [CrossRef] [PubMed]
J. M., Winterbottom , , and M. K , 1999, Reactor Design for Chemical Engineers, Taylor & Francis Ltd, Cheltenham, UK.
Lv, H. , Geletii, Y. V. , Zhao, C. , Vickers, J. W. , Zhu, G. , Luo, Z. , Song, J. , Lian, T. , Musaev, D. G. , and Hill, C. L. , 2012, “ Polyoxometalate Water Oxidation Catalysts and the Production of Green Fuel,” Chem. Soc. Rev., 41(22), pp. 7572–7589. [CrossRef] [PubMed]
Pakhare, D. , and Spivey, J. , 2014, “ A Review of Dry (CO2) Reforming of Methane Over Noble Metal Catalysts,” Chem. Soc. Rev., 43(22), pp. 7813–7837. [CrossRef] [PubMed]
Yan, L. , Zheng, Y. B. , Zhao, F. , Li, S. , Gao, X. , Xu, B. , Weiss, P. S. , and Zhao, Y. , 2012, “ Chemistry and Physics of a Single Atomic Layer: Strategies and Challenges for Functionalization of Graphene and Graphene-Based Materials,” Chem. Soc. Rev., 41(1), pp. 97–114. [CrossRef] [PubMed]
Pratt, L. , and Smoot, L. D. , Pulverized-Coal Combustion and Gasification Theory and Applications for Continuous Flow Processes, Springer Science+Business Media, LLC, New York.
Yin, C. , 2016, “ Effects of Moisture Release and Radiation Properties in Pulverized Fuel Combustion: A CFD Modelling Study,” Fuel, 165, pp. 252–259. [CrossRef]
Lázaro, M. J. , Ibarra, J. , Moliner, R. , González de Andrés, A. , and Thomas, K. M. , 1996, “ The Release of Nitrogen During the Combustion of Coal Chars: The Role of Volatile Matter and Surface Area,” Fuel, 75(8), pp. 1014–1024. [CrossRef]
Chen, W.-H. , Du, S.-W. , and Yang, T.-H. , 2007, “ Volatile Release and Particle Formation Characteristics of Injected Pulverized Coal in Blast Furnaces,” Energy Convers. Manage., 48(7), pp. 2025–2033. [CrossRef]
Li, Q. , Jiang, J. , Zhang, Q. , Zhou, W. , Cai, S. , Duan, L. , Ge, S. , and Hao, J. , 2016, “ Influences of Coal Size, Volatile Matter Content, and Additive on Primary Particulate Matter Emissions From Household Stove Combustion,” Fuel, 182, pp. 780–787. [CrossRef]
Tian, J. , Ni, H. , Cao, J. , Han, Y. , Wang, Q. , Wang, X. , Chen, L. W. A. , Chow, J. C. , Watson, J. G. , Wei, C. , Sun, J. , Zhang, T. , and Huang, R. , 2017, “ Characteristics of Carbonaceous Particles From Residential Coal Combustion and Agricultural Biomass Burning in China,” Atmos. Pollut. Res., 8(3), pp. 521–527. [CrossRef]
De Girolamo, A. , Lameu, N. K. , Zhang, L. , and Ninomiya, Y. , 2017, “ Ignitability and Combustibility of Yallourn Pyrolysis Char Under Simulated Blast Furnace Conditions,” Fuel Process. Technol., 156, pp. 113–123. [CrossRef]
Hoyer, E. , 1988, “ H. H. Schobert. Coal—The Energy Source of the Past and the Future. American Chemical Society, Washington DC, 1987,” Crystal Res. Technol., 23(7), p. 944.
Köser, J. , Becker, L. G. , Goßmann, A.-K. , Böhm, B. , and Dreizler, A. , 2017, “ Investigation of Ignition and Volatile Combustion of Single Coal Particles Within Oxygen-Enriched Atmospheres Using High-Speed OH-PLIF,” Proc. Combust. Inst., 36(2), pp. 2103–2111. [CrossRef]
van der Honing, G. , 1995, “ Topics Research Fundamentals,” Coal Sci. Technol., 22, pp. 317–333. [CrossRef]
Agarwal, P. K. , and Pedler, I. , 1986, “ Drying, Devolatilisation and Volatile Combustion for Single Coal Particles: A Pseudo Steady State Approach,” Fuel, 65(5), pp. 640–643. [CrossRef]
Fuente-Cuesta, A. , Jiang, C. , Arenillas, A. , and Irvine, J. T. S. , 2016, “ Role of Coal Characteristics in the Electrochemical Behaviour of Hybrid Direct Carbon Fuel Cells,” Energy Environ. Sci., 9(9), pp. 2868–2880. [CrossRef]
Xiang, Y. , Lu, S. , and Jiang, S. P. , 2012, “ Layer-by-Layer Self-Assembly in the Development of Electrochemical Energy Conversion and Storage Devices From Fuel Cells to Supercapacitors,” Chem. Soc. Rev., 41(21), pp. 7291–7321. [CrossRef] [PubMed]
Schobert, H. H. , 1987, The Energy Source of the Past and Future, H. H. Schobert , ed., American Chemical Society, Washington, DC, pp. 59–93.
Liu, X. , Chen, L. , Qin, X. , and Sun, F. , 2015, “ Exergy Loss Minimization for a Blast Furnace With Comparative Analyses for Energy Flows and Exergy Flows,” Energy, 93(Pt. 1), pp. 10–19. [CrossRef]
Çelik, M. S. , and Yildirim, I. , 2000, “ A New Physical Process for Desulfurization of Low-Rank Coals,” Fuel, 79(13), pp. 1665–1669. [CrossRef]
Kleyn, A. W. , 2003, “ Molecular Beams and Chemical Dynamics at Surfaces,” Chem. Soc. Rev., 32(2), pp. 87–95. [CrossRef] [PubMed]
Chadwick, H. , and Beck, R. D. , 2016, “ Quantum State Resolved Gas-Surface Reaction Dynamics Experiments: A Tutorial Review,” Chem. Soc. Rev., 45(13), pp. 3576–3594. [CrossRef] [PubMed]
Huang, W. , Sun, G. , and Cao, T. , 2017, “ Surface Chemistry of Group IB Metals and Related Oxides,” Chem. Soc. Rev., 46(7), pp. 1977–2000. [CrossRef] [PubMed]
Wang, C. , Shao, H. , Lei, M. , Wu, Y. , and Jia, L. , 2016, “ Effect of the Coupling Action Between Volatiles, Char and Steam on Isothermal Combustion of Coal Char,” Appl. Therm. Eng., 93, pp. 438–445. [CrossRef]
Yohe, G. R. , 1958, “ Oxidation of Coal,” Board of Natural Resources and conservation, Department of Registration and Education, Urbana, IL.
Roberts, M. W. , 1996, “ The Role of Short-Lived Oxygen Transients and Precursor States in the Mechanisms of Surface Reactions; a Different View of Surface Catalysis,” Chem. Soc. Rev., 25(6), pp. 437–445. [CrossRef]
Linares, M. , Minoia, A. , Brocorens, P. , Beljonne, D. , and Lazzaroni, R. , 2009, “ Expression of Chirality in Molecular Layers at Surfaces: Insights From Modelling,” Chem. Soc. Rev., 38(3), pp. 806–816. [CrossRef] [PubMed]
Krevelen, D. W. V. , 1981, “ Coal Typology-Chemistry-Physics-Constitution,” Coal Science and Technology, L. L. Anderson , ed., Elsevier, Amsterdam, The Netherlands.
Yang, X. , and Wodtke, A. M. , 2016, “ Surface Reaction Dynamics,” Chem. Soc. Rev., 45(13), pp. 3573–3575. [CrossRef] [PubMed]
Jia, H.-P. , and Quadrelli, E. A. , 2014, “ Mechanistic Aspects of Dinitrogen Cleavage and Hydrogenation to Produce Ammonia in Catalysis and Organometallic Chemistry: Relevance of Metal Hydride Bonds and Dihydrogen,” Chem. Soc. Rev., 43(17), pp. 547–564. [CrossRef] [PubMed]
Vimont, A. , Thibault-Starzyk, F. , and Daturi, M. , 2010, “ Analysing and Understanding the Active Site by IR Spectroscopy,” Chem. Soc. Rev., 39(12), pp. 4928–4950. [CrossRef] [PubMed]
Smith, J. R. , 2013, Theory of Chemisorption, Springer, Berlin Heidelberg.
Cui, G. , Wang, J. , and Zhang, S. , 2016, “ Active Chemisorption Sites in Functionalized Ionic Liquids for Carbon Capture,” Chem. Soc. Rev., 45(15), pp. 4307–4339. [CrossRef] [PubMed]
Chaemchuen, S. , Kabir, N. A. , Zhou, K. , and Verpoort, F. , 2013, “ Metal-Organic Frameworks for Upgrading Biogas Via CO2 Adsorption to Biogas Green Energy,” Chem. Soc. Rev., 42(24), pp. 9304–9332. [CrossRef] [PubMed]
Li, Z. , Zhang, Y. , Jing, X. , Zhang, Y. , and Chang, L. , 2016, “ Insight Into the Intrinsic Reaction of Brown Coal Oxidation at Low Temperature: Differential Scanning Calorimetry Study,” Fuel Process. Technol., 147, pp. 64–70. [CrossRef]
Kural, O. C. , 1994, Coal: Resources, Properties, Utilization, Pollution, Istanbul Technical University, Istanbul, Turkey.
Tran, N. H. , and Kannangara, G. S. K. , 2013, “ Conversion of Glycerol to Hydrogen Rich Gas,” Chem. Soc. Rev., 42(24), pp. 9454–9479. [CrossRef] [PubMed]
Xu, T. , Xie, Q. , and Kang, Y. , “ Heat Effect of the Oxygen-Containing Functional Groups in Coal During Spontaneous Combustion Processes,” Adv. Powder Technol., 28, pp. 1841–1848.
O'Neil, M. , and Phillips, J. , 1987, “ Differential Microcalorimetric Study of Chemical Adsorption Processes on a Microporous Solid,” J. Phys. Chem., 91(11), pp. 2867–2874. [CrossRef]
Vasireddy, S. , Morreale, B. , Cugini, A. , Song, C. , and Spivey, J. J. , 2011, “ Clean Liquid Fuels From Direct Coal Liquefaction: Chemistry, Catalysis, Technological Status and Challenges,” Energy Environ. Sci., 4(2), pp. 311–345. [CrossRef]
Boot-Handford, M. E. , Abanades, J. C. , Anthony, E. J. , Blunt, M. J. , Brandani, S. , Mac Dowell, N. , Fernandez, J. R. , Ferrari, M.-C. , Gross, R. , Hallett, J. P. , Haszeldine, R. S. , Heptonstall, P. , Lyngfelt, A. , Makuch, Z. , Mangano, E. , Porter, R. T. J. , Pourkashanian, M. , Rochelle, G. T. , Shah, N. , Yao, J. G. , and Fennell, P. S. , 2014, “ Carbon Capture and Storage Update,” Energy Environ. Sci., 7(1), pp. 130–189. [CrossRef]
Cornia, A. , Mannini, M. , Sainctavit, P. , and Sessoli, R. , 2011, “ Chemical Strategies and Characterization Tools for the Organization of Single Molecule Magnets on Surfaces,” Chem. Soc. Rev., 40(6), pp. 3076–3091. [CrossRef] [PubMed]
Wang, L-y. , Xu, Y-L. , Jiang, S-G. , Yu, M-G. , Chu, T-X. , Zhang, W-Q. , Wu, Z-y. , and Kou, L-W. , 2012, “ Imidazolium Based Ionic Liquids Affecting Functional Groups and Oxidation Properties of Bituminous Coal,” Saf. Sci., 50(7), pp. 1528–1534. [CrossRef]
McManus, T. R. , 1991, “ Petroleum and Coal,” Anal. Chem., 63(12), pp. 48R–64R. [CrossRef]
Sánchez, A. , and Mondragón, F. , 2007, “ Role of the Epoxy Group in the Heterogeneous CO2 Evolution in Carbon Oxidation Reactions,” J. Phys. Chem. C, 111(2), pp. 612–617. [CrossRef]
Roberts, M. W. , 1977, “ Tilden Lecture. New Perspectives in Surface Chemistry and Catalysis,” Chem. Soc. Rev., 6(4), p. 373. [CrossRef]
Qi, G. , Wang, D. , Zheng, K. , Xu, J. , Qi, X. , and Zhong, X. , 2015, “ Kinetics Characteristics of Coal Low-Temperature Oxidation in Oxygen-Depleted Air,” J. Loss Prev. Process Ind., 35, pp. 224–231. [CrossRef]
Li, B. , Chen, G. , Zhang, H. , and Sheng, C. , 2014, “ Development of Non-Isothermal TGA–DSC for Kinetics Analysis of Low Temperature Coal Oxidation Prior to Ignition,” Fuel, 118, pp. 385–391. [CrossRef]
Kus, J. , Misz-Kennan, M. , and Iccp , 2017, “ Coal Weathering and Laboratory (Artificial) Coal Oxidation,” Int. J. Coal Geol., 171, pp. 12–36. [CrossRef]
GündüzÖkten, V. D. , 1994, Coal Resources, Properties, Utilization, Pollution, O. Kural , ed., Özgün A.Ş, Istanbul, Turkey, p. 491.
Marinov, V. N. , 1977, “ Self-Ignition and Mechanisms of Interaction of Coal With Oxygen at Low Temperatures. 2. Changes in Weight and Thermal Effects on Gradual Heating of Coal in Air in the Range 20–300 °C,” Fuel, 56(2), pp. 158–164. [CrossRef]
Gentzis, T. , Goodarzi, F. , and McFarlane, R. A. , 1992, “ Molecular Structure of Reactive Coals During Oxidation, Carbonization and Hydrogenation—An Infrared Photoacoustic Spectroscopic and Optical Microscopic Study,” Org. Geochemistry, 18(3), pp. 249–258. [CrossRef]
Cronauer, D. C. , Ruberto, R. G. , Silver, R. S. , Jenkins, R. G. , Ismail, I. M. K. , and Schlyer, D. , 1983, “ Liquefaction of Partially Dried and Oxidized Coals,” Fuel, 62(10), pp. 1116–1123. [CrossRef]
Bouwman, R. , and Freriks, I. L. C. , 1980, “ Low-Temperature Oxidation of a Bituminous Coal. Infrared Spectroscopic Study of Samples From a Coal Pile,” Fuel, 59(5), pp. 315–322. [CrossRef]
Goodarzi, F. , 1986, “ Optical Properties of Oxidized Resinite,” Fuel, 65(2), pp. 260–265. [CrossRef]
Weaver, J. F. , Hakanoglu, C. , Antony, A. , and Asthagiri, A. , 2014, “ Alkane Activation on Crystalline Metal Oxide Surfaces,” Chem. Soc. Rev., 43(22), pp. 7536–7547. [CrossRef] [PubMed]
Clemens, A. H. , Matheson, T. W. , and Rogers, D. E. , 1991, “ Low Temperature Oxidation Studies of Dried New Zealand Coals,” Fuel, 70(2), pp. 215–221. [CrossRef]
Manskaya, S. M. , and Drozdova, T. V. , 1968, “ Chapter 3—Organic Constituents of Coal and Their Origin,” Geochem. Org. Subst., Pergamon, pp. 92–131.
Ivanov, S. K. , Rouschev, D. D. , and Markova, K. I. , 1980, “ Study of Initial Oxidation Processes in Bituminous Coals and Anthracites by Manometric Methods,” Fuel, 59(4), pp. 273–274. [CrossRef]
Vantelon, J. P. , Breillat, C. , Gaboriaud, F. , and Alaoui-Sosse, A. , 1990, “ Thermal Degradation of Timahdit Oil Shales: Behaviour in Inert and Oxidizing Environments,” Fuel, 69(2), pp. 211–215. [CrossRef]
Senneca, O. , and Salatino, P. , 2006, “ Overlapping of Heterogeneous and Purely Thermally Activated Solid-State Processes in the Combustion of a Bituminous Coal,” Combust. Flame, 144(3), pp. 578–591. [CrossRef]
Khatami, R. , and Levendis, Y. A. , 2016, “ An Overview of Coal Rank Influence on Ignition and Combustion Phenomena at the Particle Level,” Combust. Flame, 164, pp. 22–34. [CrossRef]
Smith, P. J. , Sowa, W. A. , and Hedman, P. O. , 1990, “ Furnace Design Using Comprehensive Combustion Models,” Combust. Flame, 79(2), pp. 111–121. [CrossRef]
Borghi, G. , Sarofim, A. F. , and Beér, J. M. , 1985, “ A Model of Coal Devolatilization and Combustion in Fluidized Beds,” Combust. Flame, 61(1), pp. 1–16. [CrossRef]
Anagnostopoulos, J. S. , Sargianos, N. P. , and Bergeles, G. , 1993, “ The Prediction of Pulverized Greek Lignite Combustion in Axisymmetric Furnaces,” Combust. Flame, 92(3), pp. 209–221. [CrossRef]
Helble, J. J. , and Sarofim, A. F. , 1989, “ Influence of Char Fragmentation on Ash Particle Size Distributions,” Combust. Flame, 76(2), pp. 183–196. [CrossRef]
Therssen, E. , Gourichon, L. , and Delfosse, L. , 1995, “ Devolatilization of Coal Particles in a Flat Flame—Experimental and Modeling Study,” Combust. Flame, 103(1–2), pp. 115–128. [CrossRef]
Ma, L. , and Mitchell, R. , 2009, “ Modeling Char Oxidation Behavior Under Zone II Burning Conditions at Elevated Pressures,” Combust. Flame, 156(1), pp. 37–50. [CrossRef]
Iavarone, S. , Galletti, C. , Contino, F. , Tognotti, L. , Smith, P. J. , and Parente, A. , 2016, “ CFD-Aided Benchmark Assessment of Coal Devolatilization One-Step Models in Oxy-Coal Combustion Conditions,” Fuel Process. Technol., 154, pp. 27–36. [CrossRef]
Annamalai, K. , Ryan, W. , and Dhanapalan, S. , 1994, “ Interactive Processes in Gasification and Combustion—Part III: Coal/Char Particle Arrays, Streams and Clouds,” Prog. Energy Combust. Sci., 20(6), pp. 487–618. [CrossRef]
Eatough, C. N. , and Douglas Smoot, L. , 1996, “ Devolatilization of Large Coal Particles at High Pressure,” Fuel, 75(13), pp. 1601–1605. [CrossRef]
Hees, J. , Zabrodiec, D. , Massmeyer, A. , Pielsticker, S. , Gövert, B. , Habermehl, M. , Hatzfeld, O. , and Kneer, R. , 2016, “ Detailed Analyzes of Pulverized Coal Swirl Flames in Oxy-Fuel Atmospheres,” Combust. Flame, 172, pp. 289–301. [CrossRef]
Prins, W. , Siemons, R. , Van Swaaij, W. P. M. , and Radovanovic, M. , 1989, “ Devolatilization and Ignition of Coal Particles in a Two-Dimensional Fluidized Bed,” Combust. Flame, 75(1), pp. 57–79. [CrossRef]
Wodtke, A. M. , 2016, “ Electronically Non-Adiabatic Influences in Surface Chemistry and Dynamics,” Chem. Soc. Rev., 45(13), pp. 3641–3657. [CrossRef] [PubMed]
Leckner, B. , and Werther, J. , 2000, “ Scale-Up of Circulating Fluidized Bed Combustion,” Energy Fuels, 14(6), pp. 1286–1292. [CrossRef]
Zygourakis, K. , 1993, “ Effect of Pyrolysis Conditions on the Macropore Structure of Coal-Derived Chars,” Energy Fuels, 7(1), pp. 33–41. [CrossRef]
Essenhigh, R. , 1968, “ Feature. Incineration—A Practical and Scientific Approach,” Environ. Sci. Technol., 2(7), pp. 524–534. [CrossRef]
Beeston, G. , and Essenhigh, R. H. , 1963, “ Kinetics of Coal Combustion: The Influence of Oxygen Concentration on the Burning-out Times of Single Particles,” J. Phys. Chem., 67, pp. 1349–1355.
Springer Science & Business Media, 1987, Fundamentals of the Physical-Chemistry of Pulverized Coal Combustion, Springer Science + Business Media, Dordrecht, The Netherlands.
Tillman, D. , The Combustion of Solid Fuels and Wastes, Academic Press, Washington, DC.
Reza Sharifi, S. V. P , and A. W. Scaroni , 2000, Kirk-Othmer Encyclopedia of Chemical Technology, Vol. 7, Wiley, Hoboken, NJ, pp. 435–479.
Bennaceur, K. , 2014, “ Chapter 26—CO2 Capture and Sequestration A2—Letcher, Trevor M,” Future Energy, 2nd ed., Elsevier, Boston, pp. 583–611.
Beale, A. M. , Gao, F. , Lezcano-Gonzalez, I. , Peden, C. H. F. , and Szanyi, J. , 2015, “ Recent Advances in Automotive Catalysis for NOx Emission Control by Small-Pore Microporous Materials,” Chem. Soc. Rev., 44(48), pp. 7371–7405. [CrossRef] [PubMed]
Miller, B. G. , 2011, Clean Coal Engineering Technology, B. G. Miller , ed., Butterworth-Heinemann, Oxford, UK.
Denby, B. , 1989, “Continuous Surface Mining; Equipment, Operation and Design, T. G. Rozgonyi, T. S. Golosinski (Eds.), Balkema, Englewood Cliffs, N. J. (1988), p. 225, ISBN: 90 6191 8588,” Min. Sci. Technol., 9(2), p. 237.
Bortz, S. , 1983, “ Coal Injection Into the Blast Furnace,” Commission of the European Communities, Luxembourg, Europe, Report No. EUR8544.
Singer, M. J. , 2002, “ Practice Problems: Porosity and Bulk Density,” Davis, CA, accessed June 30, 2018, http://lawr.ucdavis.edu/classes/SSC100/probsets/pset01.html
Holman, J. P. , 1989, Heat Transfer, McGraw-Hill, New York. [PubMed] [PubMed]
Kryjak, M. , Dennis, J. , and Ridler, G. , 2017, “ NOx Reduction Using Advanced Techniques in a 175MWth Multi-Fuel Corner-Fired Boiler,” Energy Procedia, 120, pp. 689–696. [CrossRef]
Bonefacic, I. , Frankovic, B. , and Kazagic, A. , 2015, “ Cylindrical Particle Modelling in Pulverized Coal and Biomass Co-Firing Process,” Appl. Therm. Eng., 78, pp. 74–81. [CrossRef]
Jones, J. M. , Patterson, P. M. , Pourkashanian, M. , Williams, A. , Arenillas, A. , Rubiera, F. , and Pis, J. J. , 1999, “ Modelling NOx Formation in Coal Particle Combustion at High Temperature: An Investigation of the Devolatilisation Kinetic Factors,” Fuel, 78(10), pp. 1171–1179. [CrossRef]
Fluent, 2005, “ Tutorial 13. Using the Non-Premixed Combustion Model,” Fluent Inc., Hanover, NH.
Ledesma, E. B. , Nelson, P. F. , and Mackie, J. C. , 1998, “ The Formation of Nitrogen Species and Oxygenated PAH during the Combustion of Coal Volatiles,” Symp. (Int.) Combust., 27(2), pp. 1687–1693. [CrossRef]
Förtsch, D. , Kluger, F. , Schnell, U. , Spliethoff, H. , and Hein, K. R. G. , 1998, “ A Kinetic Model for the Prediction of No Emissions From Staged Combustion of Pulverized Coal,” Symp. (Int.) Combust., 27(2), pp. 3037–3044. [CrossRef]
van der Lans, R. P. , Glarborg, P. , and Dam-Johansen, K. , 1997, “ Influence of Process Parameters on Nitrogen Oxide Formation in Pulverized Coal Burners,” Prog. Energy Combust. Sci., 23(4), pp. 349–377. [CrossRef]
Smoot, L. D. , 1997, “ A Decade of Combustion Research,” Prog. Energy Combust. Sci., 23(3), pp. 203–232. [CrossRef]
Muzio, L. J. , and Quartucy, G. C. , 1997, “ Implementing NOx Control: Research to Application,” Prog. Energy Combust. Sci., 23(3), pp. 233–266. [CrossRef]
Deng, L. , Jin, X. , Zhang, Y. , and Che, D. , 2016, “ Release of Nitrogen Oxides During Combustion of Model Coals,” Fuel, 175, pp. 217–224. [CrossRef]
Alganash, B. , Paul, M. C. , Watson, I. A. , 2015, “ Numerical Investigation of the Heterogeneous Combustion Processes of Solid Fuels,” Fuel, 141, pp. 236–249. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Devolatilization stage char combustion: (a) oxygen reacted with char surface and (b) oxygen reacted with volatile matter which released from coal

Grahic Jump Location
Fig. 2

A devolatilizing coal particle S.E.M. with volatile matter ejection (UK's South Brandon coal).

Grahic Jump Location
Fig. 3

A devolatilizing coal particle S.E.M. (Bituminous coal of a UK's South Brandon).

Grahic Jump Location
Fig. 4

Single coal in motion

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In