0
Research Papers: Micro/Nanoscale Heat Transfer

Melting Heat Transfer in Squeezed Nanofluid Flow Through Darcy Forchheimer Medium

[+] Author and Article Information
M. Farooq, S. Ahmad, M. Javed, Aisha Anjum

Department of Mathematics and Statistics,
Riphah International University,
Islamabad 44000, Pakistan

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF HEAT TRANSFER. Manuscript received December 23, 2017; final manuscript received August 31, 2018; published online October 8, 2018. Assoc. Editor: Evelyn Wang.

J. Heat Transfer 141(1), 012402 (Oct 08, 2018) (10 pages) Paper No: HT-17-1771; doi: 10.1115/1.4041497 History: Received December 23, 2017; Revised August 31, 2018

In this attempt, melting heat transfer characteristic of unsteady squeezed nanofluid flows in non-Darcy porous medium is interrogated. The nanofluid model incorporates Brownian diffusion and thermophoresis to characterize the heat and mass transport in the presence of thermal and solutal stratification. Similarity solutions are implemented to acquire nonlinear system of ordinary differential equations which are then evaluated using Homotopic technique. Flow behavior of involved physical parameters is examined and explanations are stated through graphs. We determine and analyze skin friction coefficient, Nusselt and Sherwood numbers through graphs. It is evident that larger melting parameter results in decrement in temperature field, while horizontal velocity enhances for higher melting parameter. Moreover, temperature and concentration fields are dominant for higher Brownian diffusion parameter.

Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.

References

Stefan, M. J. , “ Versuch Über Die Scheinbare Adhesion, Sitzungsber Sächs Akad Wiss Wein,” Math.-Nat. Wiss. Kl, 69(1874), pp. 713–721.
Das, K. , Jana, S. , and Acharya, N. , 2016, “ Slip Effects on Squeezing Flow of Nano-Fluid Between Two Parallel Disks,” IJME, 21(1), pp. 5–20.
Forchheimer, P. , 1901, “ Wasserbewewegung Durch Boden,” ZVDI, 45, pp. 1782–1788.
Hady, F. M. , Mohamed, R. A. , Mahdy, A. , and Omima, A. Z. , 2016, “ Non-Darcy Natural Convection Boundary Layer Flow Over a Vertical Cone in Porous Media Saturated With a Nano-Fluid Containing Gyrotactic Microorganisms With Convective Boundary Condition,” J. Nanofluids, 5(5), pp. 765–773. [CrossRef]
Chamkha, A. , Abbasbandy, S. , and Rashad, A. M. , 2015, “ Non-Darcy Natural Convection Flow for Non-Newtonian Nanofluid Over Cone Saturated in Porous Medium With Uniform Heat and Volume Fraction Fluxes,” Int. J. Num. Methods Heat Fluid Flow, 25(2), pp. 422–437. [CrossRef]
Awad, F. G. , Sibanda, P. , and Murthy, P. V. S. N. , 2015, “ A Note on Double Dispersion Effects in a Nano-Fluid Flow in a Non-Darcy Porous Medium,” ASME J. Heat Transfer, 137(10), p. 104501. [CrossRef]
Hayat, T. , Haider, F. , Muhammad, T. , and Alsaedi, A. , 2018, “ Darcy–Forchheimer Squeezed Flow of Carbon Nanotubes With Thermal Radiation,” J. Phys. Chem. Solids, 120, pp. 79–86. [CrossRef]
Dogonchi, A. S. , Hatami, M. , Hosseinzadeh, K. , and Domairry, G. , 2015, “ Non-Spherical Particles Sedimentation in an Incompressible Newtonian Medium by Padé Approximation,” Powder Tech., 278, pp. 248–256. [CrossRef]
Ghadikolaei, S. S. , Hosseinzadeh, K. , and Ganji, D. D. , 2017, “ Analysis of Unsteady MHD Eyring-Powell Squeezing Flow in Stretching Channel With Considering Thermal Radiation and Joule Heating Effect Using AGM,” Case Stud. Therm. Eng., 10, pp. 579–594. [CrossRef]
Rahimi, J. , Ganji, D. D. , Khaki, M. , and Hosseinzadeh, K. , 2017, “ Solution of the Boundary Layer Flow of an Eyring-Powell Non-Newtonian Fluid Over a Linear Stretching Sheet by Collocation Method,” Alexandria Eng. J., 56(4), pp. 621–627. [CrossRef]
Ghadikolaei, S. S. , Hosseinzadeh, K. , Yassari, M. , Sadeghi, H. , and Ganji, D. D. , 2018, “ Analytical and Numerical Solution of Non-Newtonian Second-Grade Fluid Flow on a Stretching Sheet,” Therm. Sci. Eng. Prog., 5, pp. 309–316. [CrossRef]
Gholinia, M. , Gholinia, S. , Hosseinzadeh, K. , and Ganji, D. D. , 2018, “ Investigation on Ethylene Glycol Nano Fluid Flow Over a Vertical Permeable Circular Cylinder Under Effect of Magnetic Field,” Res. Phys., 9, pp. 1525–1533.
Balazadeh, N. , Sheikholeslami, M. , Ganji, D. D. , and Li, Z. , 2018, “ Semi Analytical Analysis for Transient Eyring-Powell Squeezing Flow in a Stretching Channel Due to Magnetic Field Using DTM,” J. Mol. Liq., 260, pp. 30–36. [CrossRef]
Choi, S. U. S. , and Estman, J. A., 1995, “ Enhancing Thermal Conductivity of Fluids With Nanoparticles,” ASME-Publications-Fed, 231, pp. 99–106.
Saidi, M. H. , and Tamim, H. , 2016, “ Heat Transfer and Pressure Drop Characteristics of Thermophoresis and Brownian Motion,” Adv. Powder Technol., 27(2), pp. 564–574. [CrossRef]
Hayat, T. , Hussain, Z. , Ahmed, B. , and Alsaedi, A. , 2017, “ Base Fluid With CNTs as Nanoparticles Through Non-Darcy Porous Medium in Convectively Heated Flow,” Adv. Powder Technol., 28(8), pp. 1855–1865. [CrossRef]
Gupta, A. K. , and Roy, S. S. , 2015, “ Numerical Treatment for Investigation of Squeezing Unsteady Nanofluid Flow Between Parallel Plates,” Powder Technol., 279, pp. 282–289. [CrossRef]
Sheikholeslami, M. , Akbar, N. S. , and Mustafa, M. T. , 2017, “ MHD Effects Nanofluid With Energy Hydrothermal Behavior Between Collateral Plates: Application of New Semi Analytical Technique,” Therm. Sci., 21(5), pp. 2081–2093.
Sheikholeslami, M. , Ganji, D. D. , and Rashidi, M. M. , 2016, “ Magnetic Field Effect on Unsteady Nanofluid Flow and Heat Transfer Using Buongiorno Model,” J. Magn. Magn. Mater., 416, pp. 164–173. [CrossRef]
Shahmohamadi, H. , and Rashidi, M. M. , 2016, “ VIM Solution of Squeezing MHD Nano-Fluid Flow in a Rotating Channel With Lower Stretching Porous Surface,” Adv. Powder Technol., 27(1), pp. 171–178. [CrossRef]
Sheikholeslami, M. , and Ganji, D. D. , 2018, “ Influence of Electric Field on Fe3O4-Water Nanofluid Radiative and Convective Heat Transfer in a Permeable Enclosure,” J. Mol. Liq., 250, pp. 404–412. [CrossRef]
Hosseini, S. R. , Sheikholeslami, M. , Ghasemian, M. , and Ganji, D. D. , 2018, “ Nanofluid Heat Transfer Analysis in a Microchannel Heat Sink (MCHS) Under the Effect of Magnetic Field by Means of KKL Model,” Powder Technol., 324, pp. 36–47. [CrossRef]
Sheikholeslami, M. , Jafaryar, M. , Bateni, K. , and Ganji, D. D. , 2018, “ Two Phase Modeling of Nanofluid Flow in Existence of Melting Heat Transfer by Means of HAM,” Indian J. Phys., 92(2), pp. 205–2014. [CrossRef]
Sheikholeslami, M. , Ganji, D. D. , and Moradi, R. , 2017, “ Forced Convection in Existence of Lorentz Forces in a Porous Cavity With Hot Circular Obstacle Using Nanofluid Via Lattice Boltzmann Method,” J. Mol. Liq., 246, pp. 103–111. [CrossRef]
Sheikholeslami, M. , Ganji, D. D. , and Moradi, R. , 2017, “ Heat Transfer of Fe3O4–Water Nanofluid in a Permeable Medium With Thermal Radiation in Existence of Constant Heat Flux,” Chem. Eng. Sci., 174, pp. 326–336. [CrossRef]
Sheikholeslami, M. , Nimafar, M. , and Ganji, D. D. , 2017, “ Analytical Approach for the Effect of Melting Heat Transfer on Nanofluid Heat Transfer,” Eur. Phys. J. Plus, 132(9), p. 385. [CrossRef]
Sheikholeslami, M. , and Ganji, D. D. , 2017, “ Numerical Analysis of Nanofluid Transportation in Porous Media Under the Influence of External Magnetic Source,” J. Mol. Liq., 233, pp. 499–507. [CrossRef]
Sheikholeslami, M. , and Ganji, D. D. , 2017, “ Numerical Approach for Magnetic Nanofluid Flow in a Porous Cavity Using CuO Nanoparticles,” Mate. Des., 120, pp. 382–393. [CrossRef]
Sheikholeslami, M. , Ziabakhsh, Z. , and Ganji, D. D. , 2017, “ Transport of Magnetohydrodynamic Nanofluid in a Porous Media,” Colloids Surf., A, 520, pp. 201–212. [CrossRef]
Hatami, M. , Hosseinzadeh, K. , Domairry, G. , and Behnamfar, M. T. , 2014, “ Numerical Study of MHD Two-Phase Couette Flow Analysis for Fluid-Particle Suspension Between Moving Parallel Plates,” J. Taiwan Inst. Chem. Eng., 45(5), pp. 2238–2245. [CrossRef]
Hatami, M. , Sheikholeslami, M. , Hosseini, M. , and Ganji, D. D. , 2014, “ Analytical Investigation of MHD Nanofluid Flow in Non-Parallel Walls,” J. Mol. Liq., 194, pp. 251–259. [CrossRef]
Ghadikolaei, S. S. , Yassari, M. , Sadeghi, H. , Hosseinzadeh, K. , and Ganji, D. D. , 2017, “ Investigation on Thermophysical Properties of TiO2–Cu/H2O Hybrid Nanofluid Transport Dependent on Shape Factor in MHD Stagnation Point Flow,” Powder Technol., 322, pp. 428–438. [CrossRef]
Ghadikolaei, S. S. , Hosseinzadeh, K. , Yassari, M. , Sadeghi, H. , and Ganji, D. D. , 2017, “ Boundary Layer Analysis of Micropolar Dusty Fluid With TiO2 Nanoparticles in a Porous Medium Under the Effect of Magnetic Field and Thermal Radiation Over a Stretching Sheet,” J. Mol. Liq., 244, pp. 374–389. [CrossRef]
Hosseinzadeh, K. , Amiri, A. J. , Ardahaie, S. S. , and Ganji, D. D. , 2017, “ Effect of Variable Lorentz Forces on Nanofluid Flow in Movable Parallel Plates Utilizing Analytical Method,” Case Stud. Therm. Eng., 10, pp. 595–610. [CrossRef]
Ghadikolaei, S. S. , Hosseinzadeh, K. , Ganji, D. D. , and Hatami, M. , 2018, “ Fe3O4–(CH2OH)2 Nanofluid Analysis in a Porous Medium Under MHD Radiative Boundary Layer and Dusty Fluid,” J. Mol. Liq., 258, pp. 172–185. [CrossRef]
Ardahaie, S. S. , Amiri, A. J. , Amouei, A. , Hosseinzadeh, K. , and Ganji, D. D. , 2018, “ Investigating the Effect of Adding Nanoparticles to the Blood Flow in Presence of Magnetic Field in a Porous Blood Arterial,” Inf. Med. Unlocked, 10, pp. 71–81. [CrossRef]
Hosseinzadeh, K. , Alizadeh, M. , and Ganji, D. D. , 2018, “ Hydrothermal Analysis on MHD Squeezing Nanofluid Flow in Parallel Plates by Analytical Method,” Int. J. Mech. Mater. Eng., 13(1), p. 4. [CrossRef]
Ghadikolaei, S. S. , Hosseinzadeh, K. , and Ganji, D. D. , 2018, “ Investigation on Three Dimensional Squeezing Flow of Mixture Base Fluid (Ethylene Glycol-Water) Suspended by Hybrid Nanoparticle (Fe3O4-Ag) Dependent on Shape Factor,” J. Mol. Liq., 262, pp. 376–388. [CrossRef]
Ghadikolaei, S. S. , Hosseinzadeh, K. , Ganji, D. D. , and Jafari, B. , 2018, “ Nonlinear Thermal Radiation Effect on Magneto Casson Nanofluid Flow With Joule Heating Effect Over an Inclined Porous Stretching Sheet,” Case Stud. Therm. Eng., 12, pp. 176–187. [CrossRef]
Kameswaran, P. K. , Hemalatha, K. , and Madhavi, M. V. D. N. S. , 2016, “ Melting Effect on Convective Heat Transfer From a Vertical Plate Embedded in a Non-Darcy Porous Medium With Variable Permeability,” Adv. Powder Technol., 27(2), pp. 417–425. [CrossRef]
Das, K. , 2014, “ Radiation and Melting Heat Effects on MHD Boundary Layer Flow Over a Moving Surface,” Ain Shams Eng. J., 5(4), pp. 1207–1214. [CrossRef]
Hayat, T. , Farooq, M. , and Alsaedi, A. , 2014, “ Melting Heat Transfer in the Stagnation Point Flow of Maxwell Fluid With Double Diffusive Convection,” Int. J. Num. Methods Heat Fluid Flow, 24(3), pp. 760–774. [CrossRef]
Krishnamurthy, M. R. , Prasannakumara, B. C. , Gireesha, B. J. , and Gorla, R. S. R. , 2016, “ Suspended Particle Effect on Slip Flow and Melting Heat Transfer of Nanofluid Over a Stretching Sheet Embedded in a Porous Medium in the Presence of Nonlinear Thermal Radiation,” J. Nanofluids, 5(4), pp. 502–510. [CrossRef]
Gireesha, B. J. , Mahanthesh, B. , Shivakumara, I. S. , and Eshwarappa, K. M. , 2016, “ Melting Heat Transfer in Boundary Layer Stagnation-Point Flow of Nanofluid Toward a Stretching Sheet With Induced Magnetic Field,” Eng. Sci. Technol.: Int. J., 19(1), pp. 313–321. [CrossRef]
Mabood, F. , and Mastroberardino, A. , 2015, “ Melting Heat Transfer on MHD Convective Flow of a Nanofluid Over a Stretching Sheet With Viscous Dissipation and Second Order Slip,” J. Taiwan Inst. Chem. Eng., 57(1), pp. 62–68
Hayat, T. , Imtiaz, M. , and Alsaedi, A. , 2016, “ Melting Heat Transfer in MHD Flow of Cu-Water Nanofluid With Viscous Dissipation and Joule Heating,” Adv. Powder Technol., 27(4), pp. 1301–1308. [CrossRef]
Atouei, S. A. , Hosseinzadeh, K. , Hatami, M. , Ghasemi, S. E. , Sahebi, S. A. R. , and Ganji, D. D. , 2015, “ Heat Transfer Study on Convective–Radiative Semi-Spherical Fins With Temperature-Dependent Properties and Heat Generation Using Efficient Computational Methods,” Appl. Therm. Eng., 89, pp. 299–305. [CrossRef]
Hosseinzadeh, K. , Afsharpanah, F. , Zamani, S. , Gholinia, M. , and Ganji, D. D. , 2018, “ A Numerical Investigation on Ethylene Glycol-Titanium Dioxide Nanofluid Convective Flow Over a Stretching Sheet in Presence of Heat Generation/Absorption,” Case Stud. Therm. Eng., 12, pp. 228–236. [CrossRef]
Mousazadeh, S. M. , Shahmardan, M. M. , Tavangar, T. , Hosseinzadeh, K. , and Ganji, D. D. , 2018, “ Numerical Investigation on Convective Heat Transfer Over Two Heated Wall-Mounted Cubes in Tandem and Staggered Arrangement,” Theor. Appl. Mech. Lett., 8(3), pp. 171–183. [CrossRef]
Sheikholeslami, M. , and Ganji, D. D. , 2016, “ Nanofluid Hydrothermal Behavior in Existence of Lorentz Forces Considering Joule Heating Effect,” J. Mol. Liq., 224, pp. 526–537. [CrossRef]
Sheikholeslami, M., Rashidi, M. M., Al Saad, D. M., Firouzi, F., Rokni, H. B., and Domairry, G., 2016, “Steady Nanofluid Flow Between Parallel Plates Considering Thermophoresis and Brownian Effects,” J. King. Saud. Uni.-Sci., 28(4), pp. 380–389.
Sheikholeslami, M. , and Ganji, D. D. , 2015, “ Nanofluid Flow and Heat Transfer Between Parallel Plates Considering Brownian Motion Using DTM,” Comput. Methods Appl. Mech. Eng., 283, pp. 651–663. [CrossRef]
Sheikholeslami, M. , and Ganji, D. D. , 2013, “ Heat Transfer of Cu-Water Nanofluid Flow Between Parallel Plates,” Powder Technol., 235, pp. 873–879. [CrossRef]
Sheikholeslami, M. , Ashorynejad, H. R. , Ganji, D. D. , and Yıldırım, A. , 2012, “ Homotopy Perturbation Method for Three-Dimensional Problem of Condensation Film on Inclined Rotating Disk,” Sci. Iran., 19(3), pp. 437–442. [CrossRef]
Sheikholeslami, M. , Ellahi, R. , Ashorynejad, H. R. , Domairry, G. , and Hayat, T. , 2014, “ Effects of Heat Transfer in Flow of Nanofluids Over a Permeable Stretching Wall in a Porous Medium,” J. Comp. Theor. Nanosci., 11(2), pp. 486–496. [CrossRef]
Sheikholeslami, M. , and Ganji, D. D. , 2017, “ Analytical Investigation for Lorentz Forces Effect on Nanofluid Marangoni Boundary Layer Hydrothermal Behavior Using HAM,” Indian J. Phys., 91(12), pp. 1581–1587.
Sheikholeslami, M. , Ganji, D. D. , Ashorynejad, H. R. , and Rokni, H. B. , 2012, “ Analytical Investigation of Jeffery-Hamel Flow With High Magnetic Field and Nanoparticle by Adomian Decomposition Method,” Appl. Math. Mech., 33(1), pp. 25–36. [CrossRef]
Sheikholeslami, M. , Ganji, D. D. , and Ashorynejad, H. R. , 2013, “ Investigation of Squeezing Unsteady Nanofluid Flow Using ADM,” Powder Technol., 239, pp. 259–265. [CrossRef]
Sheikholeslami, M. , and Ganji, D. D. , 2014, “ Magnetohydrodynamic Flow in a Permeable Channel Filled With Nanofluid,” Sci. Iran., Trans. B, 21, pp. 203–212.
Shekholeslami, M. , Ashorynejad, H. R. , Ganji, D. D. , and Hashim, I. , 2012, “ Investigation of the Laminar Viscous Flow in a Semi-Porous Channel in the Presence of Uniform Magnetic Field Using Optimal Homotopy Asymptotic Method,” Sains Malays., 41, pp. 1281–1285.
Liao, S. J. , 2003, Beyond Perturbation: Introduction to Homotopy Analysis Method, Chapman and Hall/CRC Press, Boca Raton, FL.
Liao, S. J. , 2012, Homotopy Analysis Method in Non-Linear Differential Equations, Springer/Higher Education Press, Berlin.
Abbasi, F. M. , Shehzad, S. A. , Hayat, T. , and Alhuthali, M. S. , 2016, “ Mixed Convection Flow of Jeffrey Nanofluid With Thermal Radiation and Double Stratification,” J. Hydrodyn., 28(5), pp. 840–849. [CrossRef]
Hayat, T. , Imtiaz, M. , and Alsaedi, A. , 2016, “ Unsteady Flow of a Nanofluid With Double Stratification and Magnetohydrodynamics,” Int. J. Heat Mass Transfer, 92, pp. 100–109. [CrossRef]
Sui, J. , Zheng, L. , Zhang, X. , and Chen, G. , 2015, “ Mixed Convection Heat Transfer in Power Law Fluids Over a Moving Conveyor Along an Inclined Plate,” Int. J. Heat Mass Transfer, 85, pp. 1023–1033. [CrossRef]
Farooq, M. , Khan, M. I. , Waqas, M. , Hayat, T. , Alsaedi, A. , and Khan, M. I. , 2016, “ MHD Stagnation Point Flow of Viscoelastic Nanofluid With Non-Linear Radiation Effects,” J. Mol. Liq., 221, pp. 1097–1103. [CrossRef]
Lin, Y. , and Zheng, L. , 2015, “ Marangoni Boundary Layer Flow and Heat Transfer of Copper-Water Nanofluid Over a Porous Medium Disk,” AIP Adv., 5(10), p. 107225. [CrossRef]
Hayat, T. , Ali, S. , Awais, M. , and Obaidat, S. , 2013, “ Stagnation Point Flow of Burgers' Fluid Over a Stretching Surface,” Prog. Comput. Fluid Dyn.: Int. J., 13(1), pp. 48–53.
Hayat, T. , Ali, S. , Awais, M. , and Alhuthali, M. S. , 2015, “ Newtonian Heating in Stagnation Point Flow of Burgers Fluid,” Appl. Math. Mech., 36, pp. 61–68. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Schematic diagram of the problem

Grahic Jump Location
Fig. 2

Convergence region for fη,θη,andϕ(η)

Grahic Jump Location
Fig. 3

Variation in f(η) for varying Sq

Grahic Jump Location
Fig. 4

Variation in f'(η) for varying Sq

Grahic Jump Location
Fig. 5

Variation in f'(η) for varying α1

Grahic Jump Location
Fig. 6

Variation in f'(η) for varying Da

Grahic Jump Location
Fig. 7

Variation in f(η) for varying M

Grahic Jump Location
Fig. 8

Variation in f′(η) for varying M

Grahic Jump Location
Fig. 9

Variation in θ(η) for varying Sq

Grahic Jump Location
Fig. 10

Variation in θ(η) for varying s1

Grahic Jump Location
Fig. 11

Variation in θ(η) for varying Nb

Grahic Jump Location
Fig. 12

Variation in θ(η) for varying Nt

Grahic Jump Location
Fig. 13

Variation in θ(η) for varying M

Grahic Jump Location
Fig. 14

Variation in ϕ(η) for varying Le

Grahic Jump Location
Fig. 15

Variation in ϕ(η) for varying Nb

Grahic Jump Location
Fig. 16

Variation in ϕ(η) for varying Nt

Grahic Jump Location
Fig. 17

Variation in ϕ(η) for varying s2

Grahic Jump Location
Fig. 18

Variation of M and α1 on Cf

Grahic Jump Location
Fig. 19

Variation of SqandDaon Cf

Grahic Jump Location
Fig. 20

Variation of Nb and Nt on Nu

Grahic Jump Location
Fig. 21

Variation of SqandM on Nu

Grahic Jump Location
Fig. 22

Variation of Le and Sq on Sh

Grahic Jump Location
Fig. 23

Variation of s2 and Sq on Sh

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In