Research Papers: Micro/Nanoscale Heat Transfer

Thermal-Conductivity Enhancement of Microfluids With Ni33-ppza)4Cl2 Metal String Complex Particles

[+] Author and Article Information
Baghir A. Suleimanov

“Oil Gas Scientific Research Project” Institute,
Baku AZ1122, Azerbaijan
e-mail: Baghir.Suleymanov@socar.az

Hakim F. Abbasov, Fuad F. Valiyev, Rayyat H. Ismayilov

“Oil Gas Scientific Research Project” Institute,
Baku AZ1122, Azerbaijan

Shie-Ming Peng

Department of Chemistry,
National Taiwan University,
Taipei 10617, Taiwan, China

1Correspondence author.

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF HEAT TRANSFER. Manuscript received March 28, 2018; final manuscript received September 13, 2018; published online November 5, 2018. Assoc. Editor: Amy Fleischer.

J. Heat Transfer 141(1), 012404 (Nov 05, 2018) (6 pages) Paper No: HT-18-1183; doi: 10.1115/1.4041554 History: Received March 28, 2018; Revised September 13, 2018

The thermal conductivity of microfluids comprising Ni33-ppza)4Cl2 metal string complex (MSC) microparticles in an aqueous glycerol solution was investigated using the transient hot-wire method. A comparative analysis of the thermal-conductivity enhancements of microfluids and nanofluids revealed that the best results were achieved using microparticles of monocrystalline MSCs Ni33-ppza)4Cl2 as well as Ni55-pppmda)4Cl2 micro- and copper nanoparticles. Compared to the base fluid, the thermal-conductivity enhancements were 72% for Ni3–water–glycerol, 53% for Cu–water–glycerol, and 47% for Ni5–water–glycerol. It is shown that the high thermal-conductivity enhancement achieved with Ni3 microfluids is a result of higher stability in compare with nanofluid due to the lower density of the microparticles and the formation of particle assemblies. Therefore, the formation of hydrogen bonds between the MSC particles (through their organic fragments) and water molecules, takes place. Colloidal structure of Ni3-microfluids has a significant impact on their thermophysical properties.

Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.


Maxwell, J. C. , 1881, A Treatise on Electricity and Magnetism, Clarendon Press, Oxford, UK.
Choi, S. U. S. , 1995, “ Enhancing Thermal Conductivity of Fluids With Nanoparticles,” Developments and Applications of Non-Newtonian Flows, Vol. 66, American Society of Mechanical Engineers, New York, pp. 99–105.
Das, S. K. , Choi, S. U. , Wenhua, Y. , and Pradeep, T. , 2007, Nanofluids: Science and Technology, Wiley, Hoboken, NJ.
Choi, S. U. S. , 2008, “ Nanofluids: A New Field of Scientific Research and Innovative Applications,” Heat Transfer Eng., 29(5), pp. 429–431. [CrossRef]
Solangi, K. H. , Kazi, S. N. , Luhur, M. R. , Badarudin, A. , Amiri, A. , Sadri, R. , Zubir, M. N. M. , Gharehkhani, S. , and Teng, K. H. , 2015, “ A Comprehensive Review of Thermo-Physical Properties and Convective Heat Transfer to Nanofluids,” Energy, 89, pp. 1065–1086. [CrossRef]
Suleimanov, B. A. , Ismayilov, R. H. , Abbasov, H. F. , Wang, W. Z. , and Peng, S. M. , 2017, “ Thermophysical Properties of Nano- and Microfluids With [Ni55-Pppmda)4Cl2] Metal String Complex Particles,” Colloids Surf. A, 513, pp. 41–50. [CrossRef]
Jama, M. , Singh, T. , Gamaleldin, S. M. , Koc, M. , Samara, A. , Isaifan, R. J. , and Atieh, M. A. , 2016, “ Critical Review on Nanofluids: Preparation, Characterization, and Applications,” J. Nanomater., 2016, p. 6717624.
Saidur, R. , Leong, K. Y. , and Mohammad, H. A. , 2011, “ A Review on Applications and Challenges of Nanofluids,” Renewable Sustainable Energy Rev., 15(3), pp. 1646–1668. [CrossRef]
Colangelo, G. , Favale, E. , Milanese, M. , de Risi, A. , and Laforgia, D. , 2017, “ Cooling of Electronic Devices: Nanofluids Contribution,” Appl. Therm. Eng., 127, pp. 421–435. [CrossRef]
Bhogare, R. A. , and Kothawale, B. S. , 2013, “ A Review on Applications and Challenges of Nano-Fluids as Coolant in Automobile Radiator,” Int. J. Sci. Res. Publ., 3(8), pp. 435–441. http://www.ijsrp.org/research-paper-0813/ijsrp-p20106.pdf
Keblinski, P. , Phillpot, S. R. , Choi, S. , and Eastman, J. A. , 2002, “ Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids),” Inter. J. Heat Mass Transfer, 45(4), pp. 855–863. [CrossRef]
Yu, W. , and Choi, S. U. S. , 2003, “ The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model,” J. Nanopart. Res., 5(1/2), pp. 167–171. [CrossRef]
Feng, Y. , Yu, B. , Xu, P. , and Zou, M. , 2007, “ The Effective Conductivity of Nanofluids Based on the Nanolayer and the Aggregation of Nanoparticles,” J. Phys. D: Appl. Phys., 40(10), pp. 3164–3171. [CrossRef]
Jang, S. P. , and Choi, S. U. S. , 2004, “ Role of Brownian Motion in the Enhanced Thermal Conductivity of Nanofluids,” Appl. Phys. Lett., 84(21), pp. 4316–4318. [CrossRef]
Sundar, L. S. , Farooky, M. H. , Sarada, N. , and Singh, M. K. , 2013, “ Experimental Thermal Conductivity of Ethylene Glycol and Water Mixture Based Low Volume Concentration of Al2O3 and CuO Nanofluids,” Int. Commun. Heat Mass Transfer, 41, pp. 41–46. [CrossRef]
Colangelo, G. , Favale, E. , Milanese, M. , Starace, G. , and de Risi, A. , 2017, “ Experimental Measurements of Al2O3 and CuO Nanofluids Interaction With Microwaves,” J. Energy Eng., 143(2), pp. 143–147.
Colangelo, G. , Favale, E. , Paola, M. , Milanese, M. , and de Risi, A. , 2016, “ Thermal Conductivity, Viscosity and Stability of Al2O3‐Diathermic Oil Nanofluids for Solar Energy Systems,” Energy, 95, pp. 124–136. [CrossRef]
Milanese, M. , Iacobazzi, F. , Colangelo, G. , and de Risi, A. , 2016, “ An Investigation of Layering Phenomenon at the Liquid‐Solid Interface in Cu and CuO Based Nanofluids,” Int. J. Heat Mass Transfer, 103, pp. 564–571. [CrossRef]
Iacobazzi, F. , Milanese, M. , Colangelo, G. , Lomascolo, M. , and de Risi, A. , 2016, “ An Explanation of the Al2O3 Nanofluid Thermal Conductivity Based on the Phonon Theory of Liquid,” Energy, 116, pp. 786–794. [CrossRef]
Colangelo, G. , Milanese, M. , and de, R. A. , 2017, “ Numerical Simulation of Thermal Efficiency of an Innovative Al2O3 Nanofluid Solar Thermal Collector: Influence of Nanoparticles Concentration,” Therm. Sci., 21(6 Part B), pp. 2769–2779. [CrossRef]
Suleimanov, B. A. , and Abbasov, H. F. , 2016, “ Effect of Copper Nanoparticle Aggregation on the Thermal Conductivity of Nanofluids,” Russ. J. Phys. Chem. A, 90(2), pp. 420–428. [CrossRef]
Tsao, T.-B. , Lee, G.-H. , Yeh, C.-Y. , and Peng, S.-M. , 2003, “ Supramolecular Assembly of Linear Trinickel Complexes Incorporating Metalloporphyrins: A Novel One-Dimensional Polymer and Oligomer,” Dalton Trans., 8, pp. 1465–1471. [CrossRef]
Cl´erac, R. , Cotton, F. A. , Dunbar, K. R. , Murillo, C. A. , Pascual, I. , and Wang, X. , 1999, “ Further Study of the Linear Trinickel(ii) Complex of Dipyridylamide,” Inorg. Chem., 38(11), pp. 2655–2657. [CrossRef]
Ismayilov, R. H. , Wang, W.-Z. , Lee, G.-H. , Wang, R.-R. , Liu, I. P.-H. , Yeh, C.-Y. , and Peng, S.-M. , 2007, “ New Versatile Ligand Family, Pyrazine-Modulated Oligo-α-Pyridylamino Ligands, From Coordination Polymer to Extended Metal Atom Chains,” Dalton Trans., 27, pp. 2898–2907. [CrossRef]
Nagasaka, Y. , and Nagashima, A. , 1981, “ Absolute Measurement of the Thermal Conductivity of Electrically Conducting Liquids by the Transient Hot-Wire Method,” J. Phys. E: Sci. Instrum., 14(12), pp. 1435–1440. [CrossRef]
Hong, S. W. , Kang, Y. T. , Kleinstreuer, C. , and Koo, J. , 2011, “ Impact Analysis of Natural Convection on Thermal Conductivity Measurements of Nanofluids Using the Transient Hot-Wire Method,” Int. J. Heat Mass Transfer, 54(15–16), pp. 3448–3456. [CrossRef]
Efremov, I. F. , and Usyarov, O. G. , 1976, “ The Long-Range Interaction Between Colloid and Other Particles and the Formation of Periodic Colloid Structures,” Russ. Chem. Rev., 45(5), pp. 435–453. [CrossRef]
Chen, I. W. P. , Fu, M. D. , Tseng, W. H. , Yu, J. Y. , Wu, S. H. , Ku, C. J. , Chen, G. H. , and Peng, S. M. , 2006, “ Conductance and Stochastic Switching of Ligand-Supported Linear Chains of Metal Atoms,” Angew. Chem. Int. Ed., 45(35), pp. 5814–5818. [CrossRef]
Zafarani-Moattar, M. T. , and Majdan-Cegincara, R. , 2013, “ Investigation on Stability and Rheological Properties of Nanofluid of ZnO Nanoparticles Dispersed in Poly(ethylene Glycol),” Fluid Phase Equilib., 354, pp. 102–108. [CrossRef]
Tseng, W. J. , and Lin, K.-C. , 2003, “ Rheology and Colloidal Structure of Aqueous TiO2 Nanoparticle Suspensions,” Mater. Sci. Eng. A, 355(1–2), pp. 186–192. [CrossRef]


Grahic Jump Location
Fig. 1

(a) Crystal structure of Ni33-ppza)4Cl2 (where X = 1/2N + 1/2C). The thermal ellipsoids are at the 30% probability level and hydrogen atoms are omitted for clarity. (b) Hydrogen bonds (dashed lines) between MSC particles (through their organic fragments) and water molecules.

Grahic Jump Location
Fig. 2

Stabilization of particle size of monocrystalline metal string Ni33-ppza)4Cl2 complex (5 vol %) in base fluid

Grahic Jump Location
Fig. 3

Process of measuring fluid thermal conductivity using the transient hot-wire method

Grahic Jump Location
Fig. 4

Scanning electron microscope images of microparticles of MSC Ni33-ppza)4Cl2 (1 vol %) in base fluid

Grahic Jump Location
Fig. 5

Concentration dependence of thermal-conductivity enhancement for Ni3–water–glycerol

Grahic Jump Location
Fig. 6

Thermal-conductivity enhancement of nano- and microfluids at a particle volume fraction of φ = 5 vol %

Grahic Jump Location
Fig. 7

The dependence of viscosity on shear rate for Ni3-microfluid at temperature of 25 °C

Grahic Jump Location
Fig. 8

Concentration dependence of surface tension of Ni3–water–glycerol

Grahic Jump Location
Fig. 9

Concentration dependence of freezing point of Ni3–water–glycerol

Grahic Jump Location
Fig. 10

The freezing temperatures of the systems studied



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In