Berman,
A. S.
, 1953, “
Laminar Flow in Channels With Porous Walls,” J. App. Phys.,
24(9), pp. 1232–1235.

[CrossRef]
Terril,
R. M.
, 1982, “
An Exact Solution for Flow in a Porous Pipe,” J. Appl. Math. Phys.,
33(4), pp. 547–542.

Terril,
R. M.
, 1983, “
Laminar Flow Through a Porous Tube,” ASME J. Fluids Eng.,
105, pp. 303–306.

[CrossRef]
Tsangaris,
S.
,
Kondaxakis,
D.
, and
Vlachakis,
N. W.
, 2007, “
Exact Solution for Flow in a Porous Pipe With Unsteady Wall Suction/Injection,” Commun. Nonlinear Sci. Numer. Simul.,
12(7), pp. 1181–1189.

[CrossRef]
Cox,
B. J.
, and
Hill,
J. M.
, 2011, “
Flow Through a Circular Tube With Permeable Navier Slip Boundary,” Nanoscale Res. Lett.,
6(1), pp. 389–397.

[CrossRef] [PubMed]
Ramana Murthy,
J. V.
,
Nagaraju,
G.
, and
Muthu,
P.
, 2012, “
Micropolar Fluid Flow Generated by a Circular Cylinder Subject to Longitudinal and Torsional Oscillations With Suction/Injection,” Tamkang J. Math.,
43(3), pp. 339–356.

Boutros,
Y. Z.
,
Abd-el-Malek,
M. B.
,
Badran,
N. A.
, and
Hassan,
H. S.
, 2006, “
Lie-Group Method for Unsteady Flows in a Semi-Infinite Expanding or Contracting Pipe With Injection or Suction Through a Porous Wall,” J. Comput. Appl. Math.,
197(2), pp. 465–494.

[CrossRef]
Terril,
R. M.
, and
Shrestha,
G. M.
, “
Laminar Flow Through Channels With Porous Walls and With an Applied Transverse Magnetic Field,” Appl. Sci. Res.,
11(1–2), pp. 134–144.

Attia,
H. A.
, 2003, “
Unsteady Flow of a Dusty Conducting Non-Newtonian Fluid Through a Pipe,” Can. J. Phys.,
81(5), pp. 789–795.

[CrossRef]
Moustafa,
E.
, 2006, “
MHD of a Fractional Viscoelastic Fluid in a Circular Tube,” Mech. Res. Commun.,
33(2), pp. 261–268.

[CrossRef]
Ramana Murthy,
J. V.
,
Bahali,
N. K.
, and
Srinivasacharya,
D.
, 2010, “
Unsteady Flow of a Micropolar Fluid Through a Circular Pipe Under a Transverse Magnetic Field With Suction/Injection,” Selguk J. Appl. Math.,
11(**2**), pp. 13–25.

Ramana Murthy,
J. V.
,
Sai,
K. S.
, and
Bahali,
N. K.
, 2011, “
Steady Flow of Micropolar Fluid in a Rectangular Channel Under Transverse Magnetic Field With Suction,” AIP Adv.,
1(3), p. 032123.

[CrossRef]
Ou,
J. W.
, and
Cheng,
K. C.
, 1973, “
Viscous Dissipation Effects on Thermal Entrance Heat Transfer in Pipe Flows With Uniform Wall Heat Flux,” Appl. Sci. Res.,
28(1), pp. 289–301.

[CrossRef]
El Dabe,
N. T.
,
Moatimid,
G. M.
, and
Ali,
H. S. M.
, 2002, “
Rivlin-Ericksen Fluid in Tube of Varying Cross Section With Mass and Heat Transfer,” Z. Naturforsch. A,
57(A), pp. 863–873.

[CrossRef]
Jha,
B. K.
, and
Ajibade,
A. O.
, 2012, “
Effect of Viscous Dissipation on Natural Convection Flow Between Vertical Parallel Plates With Time-Periodic Boundary Conditions,” Commun. Nonlinear Sci. Numer. Simul.,
17, pp. 1576–1587.

[CrossRef]
Srinivas,
S.
,
Vijayalakshmi,
A.
,
Reddy,
A. S.
, and
Mohan,
T. R. R.
, 2016, “
MHD Flow of a Nanofluid in an Expanding or Contracting Porous Pipe With Chemical Reaction and Heat Source/Sink,” Propul. Power Res.,
5(2), pp. 134–148.

[CrossRef]
Sahin,
A. Z.
, and
Ben-Mansour,
R.
, 2003, “
Entropy Generation in Laminar Fluid Flow Through a Circular Pipe,” Entropy,
5(5), pp. 404–416.

[CrossRef]
Ben-Mansour,
R.
, and
Sahin,
A. Z.
, 2005, “
Entropy Generation in Developing Laminar Fluid Flow Through a Circular Pipe With Variable Properties,” Heat Mass Transfer,
42(1), pp. 1–11.

[CrossRef]
Haddad,
O. M.
,
Alkam,
M. K.
, and
Khasawneh,
M. T.
, 2004, “
Entropy Generation Due to Laminar Forced Convection in the Entrance Region of a Concentric Annulus,” Energy,
29(1), pp. 35–55.

[CrossRef]
Ozalp,
A. A.
, 2009, “
Entropy Analysis of Laminar-Forced Convection in a Pipe With Wall Roughness,” Int. J. Exergy,
6(2), pp. 249–275.

[CrossRef]
Sarkar,
S.
,
Ganguly,
S.
, and
Dalal,
A.
, 2014, “
Analysis of Entropy Generation During Mixed Convective Heat Transfer of Nanofluids Past a Rotating Circular Cylinder,” ASME J. Heat Transfer,
136(6), p. 062501.

Nagaraju,
G.
,
Srinivas,
J.
,
Ramana Murthy,
J. V.
, and
Rashad,
A. M.
, 2017, “
Entropy Generation Analysis of the MHD Flow of Couple Stress Fluid Between Two Concentric Rotating Cylinders With Porous Lining,” Heat Transfer Asian Res.,
46(4), pp. 316–330.

[CrossRef]
Alizadeh,
R.
,
Rahimi,
A. B.
,
Arjmandzadeh,
R.
,
Najafi,
M.
, and
Alizadeh,
A.
, 2016, “
Unaxisymmetric Stagnation-Point Flow and Heat Transfer of a Viscous Fluid With Variable Viscosity on a Cylinder in Constant Heat Flux,” Alexandria Eng. J.,
55(2), pp. 1271–1283.

[CrossRef]
Ramana Murthy,
J. V.
, and
Srinivas,
J.
, 2013, “
Second Law Analysis for Poiseuille Flow of Immiscible Micropolar Fluids in a Channel,” Int. J. Heat Mass Transfer,
65, pp. 254–264.

[CrossRef]
Adesanya,
S. O.
,
Kareem,
S. O.
,
Falade,
J. A.
, and
Arekete,
S. A.
, 2015, “
Entropy Generation Analysis for a Reactive Couple Stress Fluid Flow Through a Channel Saturated With Porous Material,” Energy,
93, pp. 1239–1245.

[CrossRef]
Srinivasacharya,
D.
, and
Hima Bindu,
K.
, 2015, “
Entropy Generation in a Micropolar Fluid Flow Through an Inclined Channel With Slip and Convective Boundary Conditions,” Energy,
91, pp. 72–83.

[CrossRef]
Srinivas,
J.
,
Nagaraju,
G.
, and
Bég,
O. A.
, 2016, “
Mathematical Modeling of Entropy Generation in Magnetized Micropolar Flow Between co-Rotating Cylinders With Internal Heat Generation,” Alexandria Eng. J.,
55(3), pp. 1969–1982.

[CrossRef]
Aksoy,
Y.
, 2016, “
Effects of Couple Stresses on the Heat Transfer and Entropy Generation Rates for a Flow Between Parallel Plates With Constant Heat Flux,” Int. J. Therm. Sci.,
107, pp. 1–12.

[CrossRef]
Nezhad,
A. H.
, and
Shahri,
M. F.
, 2016, “
Entropy Generation Case Studies of Two Immiscible Fluids Under the Influence of a Uniform Magnetic Field in an Inclined Channel,” J. Mech.,
32(6), pp. 749–757.

Jangili,
S.
, and
Bég,
O. A.
, 2018, “
Homotopy Study of Entropy Generation in Magnetized Micropolar Flow in a Vertical Parallel Plate Channel With Buoyancy Effect,” Heat Transfer Res.,
49(6), pp. 529–553.

[CrossRef]
Liao,
S. J.
, 2003, Beyond Perturbation: Introduction to Homotopy Analysis Method,
Chapman & Hall/CRC Press,
Boca Raton, FL.

Bird,
R. B.
,
Stewart,
W. E.
, and
Lightfoot,
E. N.
, 1960, Transport Phenomena,
Wiley,
New York.

Bejan,
A.
, 1982, “
Second Law Analysis in Heat Transfer and Thermal Design,” Adv. Heat Transfer,
15, pp. 1–58.

[CrossRef]
Paoletti,
S.
,
Rispoli,
F.
, and
Sciubba,
E.
, 1989, “
Calculation of Exergetic Losses in Compact Heat Exchanger Passages,” Adv. Energy Syst. Div.,
10(2), pp. 21–29.

Ramana Murthy,
J. V.
,
Srinivas,
J.
, and
Chamkha,
A. J.
, 2016, “
Analysis of Entropy Generation in an Inclined Channel Flow Containing Two Immiscible Micropolar Fluids Using HAM,” Int. J. Numer. Methods Heat Fluid Flow,
26(3/4), pp. 1–24.

Fatih,
S.
, and
Oztop,
H. F.
, 2016, “
MHD Mixed Convection and Entropy Generation of Power Law Fluids in a Cavity With a Partial Heater Under the Effect of a Rotating Cylinder,” Int. J. Heat Mass Transfer,
98, pp. 40–51.

[CrossRef]
Adesanya,
S. O.
,
Falade,
J. A.
,
Jangili,
S.
, and
Beg,
O. A.
, 2017, “
Irreversibility Analysis for Reactive Third-Grade Fluid Flow and Heat Transfer With Convective Wall Cooling,” Alexandria Eng. J.,
56(1), pp. 153–160.

[CrossRef]
Gardner,
R. A.
, 1968, “
Laminar Pipe Flow in a Transverse Magnetic Field With Heat Transfer,” Int. J. Heat Mass Transfer,
11(6), pp. 1076–1081.

[CrossRef]
Cunha,
F. R.
, and
Sobral,
Y. D.
, 2005, “
Asymptotic Solution for Pressure-Driven Flows of Magnetic Fluids in Pipes,” J. Magnet. Magn. Mater.,
289, pp. 314–317.

[CrossRef]