Singh,
S.
,
Sørensen,
K.
, and
Condra,
T. J.
, 2017, “
Investigation of Material Efficient Fin Patterns for Cost-Effective Operation of Fin and Tube Heat Exchanger,” Appl. Therm. Eng.,
126(11), pp. 903–914.

[CrossRef]
Bergles,
A. E.
,
Webb,
R. L.
, and
Junkhan,
G. H.
, 1979, “
Energy Conservation Via Heat Transfer Enhancement,” Energy,
4(2), pp. 193–200.

[CrossRef]
Bergles,
A. E.
, 1997, “
Heat Transfer Enhancement—The Encouragement and Accommodation of High Heat Fluxes,” ASME J. Heat Transfer,
119(1), pp. 8–19.

[CrossRef]
Steinke,
M. E.
, and
Kandlikar,
S. G.
, 2004, “
Review of Single-Phase Heat Transfer Enhancement Techniques for Application in Microchannels, Minichannels and Microdevices,” Int. J. Heat Technol.,
22(2), pp. 3–11.

Bergles,
A. E.
, 2002, “
ExHFT for Fourth Generation Heat Transfer Technology,” Exp. Therm. Fluid Sci.,
26(2–4), pp. 335–344.

[CrossRef]
Garimella,
S. V.
, and
Eibeck,
P. A.
, 1991, “
Enhancement of Single Phase Convective Heat Transfer From Protruding Elements Using Vortex Generators,” Int. J. Heat Mass Transfer,
34(9), pp. 2431–2433.

[CrossRef]
Fiebig,
M.
, 1998, “
Vortices, Generators and Heat Transfer,” Chem. Eng. Res. Des.,
76(2), pp. 108–123.

[CrossRef]
Urkiola,
A.
,
Fernandez-Gamiz,
U.
,
Errasti,
I.
, and
Zulueta,
E.
, 2017, “
Computational Characterization of the Vortex Generated by a Vortex Generator on a Flat Plate for Different Vane Angles,” Aerosp. Sci. Technol.,
65, pp. 18–25.

[CrossRef]
Ghanem,
A.
,
Habchi,
C.
,
Lemenand,
T.
,
Valle,
D. D.
, and
Peerhossaini,
H.
, 2013, “
Energy Efficiency in Process Industry-High-Efficiency Vortex (HEV) Multifunctional Heat Exchanger,” Renewable Energy,
56, pp. 96–104.

[CrossRef]
Biswas,
G.
,
Mitra,
N. K.
, and
Fiebig,
M.
, 1994, “
Heat Transfer Enhancement in Fin-Tube Heat Exchangers by Winglet Type Vortex Generators,” Int. J. Heat Mass Transfer,
37(2), pp. 283–291.

[CrossRef]
Fiebig,
M.
, 1995, “
Embedded Vortices in Internal Flow: Heat Transfer and Pressure Loss Enhancement,” Int. J. Heat Fluid Flow,
16(5), pp. 376–388.

[CrossRef]
Fiebig,
M.
,
Valencia,
A.
, and
Mitra,
N. K.
, 1994, “
Local Heat Transfer and Flow Losses in Fin-and-Tube Heat Exchangers With Vortex Generators: A Comparison of Round and Flat Tubes,” Exp. Therm. Fluid Sci.,
8(1), pp. 35–45.

[CrossRef]
Tiggelbeck,
S.
,
Mitra,
N. K.
, and
Fiebig,
M.
, 1992, “
Flow Structure and Heat Transfer in a Channel With Multiple Longitudinal Vortex Generators,” Exp. Therm. Fluid Sci.,
5(4), pp. 425–436.

[CrossRef]
Tiggelbeck,
S.
,
Mitra,
N. K.
, and
Fiebig,
M.
, 1993, “
Experimental Investigations of Heat Transfer Enhancement and Flow Losses in a Channel With Double Rows of Longitudinal Vortex Generators,” Int. J. Heat Mass Transfer,
36(9), pp. 2327–2337.

[CrossRef]
Fiebig,
M.
,
Valencia,
A.
, and
Mitra,
N. K.
, 1993, “
Wing-type Vortex Generators for Fin-and-Tube Heat Exchangers,” Exp. Therm. Fluid Sci.,
7(4), pp. 287–295.

[CrossRef]
Joardar,
A.
, and
Jacobi,
A. M.
, 2008, “
Heat Transfer Enhancement by Winglet-Type Vortex Generator Arrays in Compact Plain-Fin-and-Tube Heat Exchangers,” Int. J. Refrig.,
31(1), pp. 87–97.

[CrossRef]
He,
J. J.
,
Liu,
L. L.
, and
Jacobi,
A. M.
, 2010, “
Air-Side Heat-Transfer Enhancement by a New Winglet-Type Vortex Generator Array in a Plain-Fin Round-Tube Heat Exchanger,” ASME J. Heat Transfer,
132(7), p. 071801.

[CrossRef]
Jacobi,
A. M.
, and
Shah,
R. K.
, 1995, “
Heat Transfer Surface Enhancement Through the Use of Longitudinal Vortices: A Review of Recent Progress,” Exp. Therm. Fluid Sci.,
11(3), pp. 295–309.

[CrossRef]
Turk,
A. Y.
, and
Junkhan,
G. H.
, 1986, “
Heat Transfer Enhancement Downstream of Vortex Generators on a Flat Plate,” Eighth International Heat Transfer Conference, San Francisco, CA, Aug. 17–22, pp. 2903–2908.

Jang,
J. Y.
,
Hsu,
L. F.
, and
Leu,
J. S.
, 2013, “
Optimization of the Span Angle and Location of Vortex Generators in a Plate-Fin and Tube Heat Exchanger,” Int. J. Heat Mass Transfer,
67, pp. 432–444.

[CrossRef]
Liou,
T. M.
,
Chen,
C. C.
, and
Tsai,
T. W.
, 2000, “
Heat Transfer and Fluid Flow in a Square Duct With 12 Different Shaped Vortex Generators,” ASME J. Heat Transfer,
122(2), pp. 327–335.

[CrossRef]
Li,
L.
,
Du,
X.
,
Zhang,
Y.
,
Yang,
L.
, and
Yang,
Y.
, 2015, “
Numerical Simulation on Flow and Heat Transfer of Fin-and-Tube Heat Exchanger With Longitudinal Vortex Generators,” Int. J. Therm. Sci.,
92, pp. 85–96.

[CrossRef]
Chu,
P.
,
He,
Y. L.
,
Lei,
Y. G.
,
Tian,
L. T.
, and
Li,
R.
, 2009, “
Three-Dimensional Numerical Study on Fin-and-Oval-Tube Heat Exchanger With Longitudinal Vortex Generators,” Appl. Therm. Eng.,
29(5–6), pp. 859–876.

[CrossRef]
Tian,
L.
,
He,
Y.
,
Chu,
P.
, and
Tao,
W.
, 2009, “
Numerical Study of Flow and Heat Transfer Enhancement by Using Delta Winglets in a Triangular Wavy Fin-and-Tube Heat Exchanger,” ASME J. Heat Transfer,
131(9), p. 091901.

[CrossRef]
Salviano,
L. O.
,
Dezan,
D. J.
, and
Yanagihara,
J. I.
, 2015, “
Optimization of Winglet-Type Vortex Generator Positions and Angles in Plate-Fin Compact Heat Exchanger: Response Surface Methodology and Direct Optimization,” Int. J. Heat Mass Transfer,
82, pp. 373–387.

[CrossRef]
Chen,
Y.
,
Fiebig,
M.
, and
Mitra,
N. K.
, 2000, “
Heat Transfer Enhancement of Finned Oval Tubes With Staggered Punched Longitudinal Vortex Generators,” Int. J. Heat Mass Transfer,
43(3), pp. 417–435.

[CrossRef]
Zhang,
T.
,
Haung,
Z. Q.
,
Zhang,
X. B.
, and
Liu,
C. J.
, 2016, “
Numerical Investigation of Heat Transfer Using a Novel Punched Vortex Generator,” Numer. Heat Transfer, Part A: Appl.,
69(10), pp. 1150–1168.

[CrossRef]
He,
Y. L.
,
Han,
H.
,
Tao,
W. Q.
, and
Zang,
Y. W.
, 2012, “
Numerical Study of Heat-Transfer Enhancement by Punched Winglet-Type Vortex Generator Arrays in Fin-and-Tube Heat Exchangers,” Int. J. Heat Mass Transfer,
55(21–22), pp. 5449–5458.

[CrossRef]
Tian,
X. L.
,
Jin,
H.
,
Song,
K. W.
,
Wang,
L. C.
,
Liu,
S.
, and
Wang,
L. B.
, 2018, “
Effects of Fin Pitch and Tube Diameter on the Air-Side Performance of Tube Bank Fin Heat Exchanger With the Fins Punched Plane and Curved Rectangular Vortex Generators,” Exp. Heat Transfer,
31(4), pp. 297–316.

[CrossRef]
Välikangas,
T.
,
Singh,
S.
,
Sørensen,
K.
, and
Condra,
T. J.
, 2018, “
Fin-and-Tube Heat Exchanger Enhancement With a Combined Herringbone and Vortex Generator Design,” Int. J. Heat Mass Transfer,
118, pp. 602–616.

[CrossRef]
Tao,
W. Q.
,
He,
Y. L.
,
Wang,
Q. W.
,
Qu,
Z. G.
, and
Song,
F. Q.
, 2002, “
A Unified Analysis on Enhancing Single Phase Convective Heat Transfer With Field Synergy Principle,” Int. J. Heat Mass Transfer,
45(24), pp. 4871–4879.

[CrossRef]
Cheng,
Y. P.
,
Qu,
Z. G.
,
Tao,
W. Q.
, and
He,
Y. L.
, 2004, “
Numerical Design of Efficient Slotted Fin Surface Based on the Field Synergy Principle,” Numer. Heat Transf. Part A Appl.,
45(6), pp. 517–538.

[CrossRef]
Cheng,
Y. P.
,
Lee,
T. S.
, and
Low,
H. T.
, 2007, “
Numerical Analysis of Periodically Developed Fluid Flow and Heat Transfer Characteristics in the Triangular Wavy Fin-and-Tube Heat Exchanger Based on Field Synergy Principle,” Numer. Heat Transfer, Part A: Appl., Int. J. Comput. Methodology,
53(8), pp. 821–842.

[CrossRef]
Jia,
H.
,
Liu,
Z. C.
,
Liu,
W.
, and
Nakayama,
A.
, 2014, “
Convective Heat Transfer Optimization Based on Minimum Entransy Dissipation in the Circular Tube,” Int. J. Heat Mass Transfer,
73, pp. 124–129.

[CrossRef]
Wang,
J.
,
Liu,
Z.
,
Yuan,
F.
,
Liu,
W.
, and
Chen,
G.
, 2015, “
Convective Heat Transfer Optimization in a Circular Tube Based on Local Exergy Destruction Minimization,” Int. J. Heat Mass Transfer,
90, pp. 49–57.

[CrossRef]
Yu,
H.
,
Wen,
J.
,
Xu,
G.
, and
Li,
H.
, 2016, “
Theoretically and Numerically Investigation About the Novel Evaluating Standard for Convective Heat Transfer Enhancement Based on the Entransy Theory,” Int. J. Heat Mass Transfer,
98, pp. 183–192.

[CrossRef]
Wu,
J. M.
, and
Tao,
W. Q.
, 2008, “
Numerical Study on Laminar Convection Heat Transfer in a Rectangular Channel With Longitudinal Vortex Generator—Part A: Verification of Field Synergy Principle,” Int. J. Heat Mass Transfer,
51(5–6), pp. 1179–1191.

[CrossRef]
Singh,
S.
,
Sørensen,
K.
, and
Condra,
T. J.
, 2016, “
Influence of the Degree of Thermal Contact in Fin and Tube Heat Exchanger: A Numerical Analysis,” Appl. Therm. Eng.,
107(25), pp. 612–624.

[CrossRef]
Singh,
S.
,
Sørensen,
K.
, and
Condra,
T. J.
, 2016, “
Parametric CFD Analysis to Study the Influence of Fin Geometry on the Performance of a Fin and Tube Heat Exchanger,” Nineth Eurosim Congress on Modelling and Simulation (EUROSIM), Oulu, Finland, Sept. 12–16, pp. 135–140.

Singh,
S.
,
Sørensen,
K.
,
Simonsen,
A. S.
, and
Condra,
T. J.
, 2017, “
Implications of Fin Profiles on Overall Performance and Weight Reduction of a Fin and Tube Heat Exchanger,” Appl. Therm. Eng.,
115, pp. 962–976.

[CrossRef]
Chen,
H. T.
, and
Lai,
J. R.
, 2012, “
Study of Heat-Transfer Characteristics on the Fin of Two-Row Plate Finned-Tube Heat Exchangers,” Int. J. Heat Mass Transfer,
55(15–16), pp. 4088–4095.

[CrossRef]
Jin,
Y.
,
Tang,
G. H.
,
He,
T. L.
, and
Tao,
W. Q.
, 2013, “
Parametric Study and Field Synergy Principle Analysis of H-Type Finned Tube Bank With 10 Rows,” Int. J. Heat Mass Transfer,
60, pp. 241–251.

[CrossRef]
Jin,
Y.
,
Yu,
Z. Q.
,
Tang,
G. H.
,
He,
T. L.
, and
Tao,
W. Q.
, 2016, “
Parametric Study and Multiple Correlations of an H-Type Finned Tube Bank in a Fully Developed Region,” Numer. Heat Transfer, Part A: Appl.,
70(1), pp. 64–78.

[CrossRef]
Kazi,
S. N.
, 2015, “Heat Transfer Studies and Applications,” IntechOpen, London, UK.

Menter,
F. R.
, 1993, “
Zonal Two Equation k-u Turbulence Models for Aerodynamic Flows,” AIAA Paper No. 93-2906.

Menter,
F. R.
, 1994, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications,” AIAA J.,
38(8), pp. 1598–1605.

[CrossRef]
Nagaosa,
R. S.
, 2017, “
Turbulence Model-Free Approach for Predictions of Air Flow Dynamics and Heat Transfer in a Fin-and-Tube Exchange,” Energy Convers. Manage.,
142, pp. 414–425.

[CrossRef]
Hirsch,
C.
, 1991, Numerical Computation of Internal and External Flows, Vol.
2,
Wiley, New York.

Barbosa
,
J. R., Jr.
,
Hermes,
C. J. L.
, and
Melo,
C.
, 2010, “
CFD Analysis of Tube-Fin “No-Frost” Evaporators,” J. Braz. Soc. Mech. Sci. Eng.,
32(4), pp. 445–453.

Menter,
F. R.
,
Kuntz,
M.
, and
Langtry,
R.
, 2003, “
Ten Years of Industrial Experience With the SST Turbulence Model,” Turbul. Heat Mass Transfer,
4, pp. 625–632.

Woelke,
M.
, 2007, “
Eddy Viscosity Turbulence Models Employed by Computational Fluid Dynamic,” Prace Instytutu Lotnictwa, Scientific Publishers of the Institute of Aviation, Warsaw, Poland, pp. 92–113.

Patankar,
S. V.
, 1980, Numerical Heat Transfer and Fluid Flow,
Hemisphere,
Washington DC.

Eça,
L.
, and
Hoekstra,
M.
, 2014, “
A Procedure for the Estimation of the Numerical Uncertainty of CFD Calculations Based on Grid Refinement Studies,” J. Comput. Phys.,
262, pp. 104–130.

[CrossRef]
Chen,
H.
,
Wang,
Y.
,
Zhao,
Q.
,
Ma,
H.
,
Li,
Y.
, and
Chen,
Z.
, 2014, “
Experimental Investigation of Heat Transfer and Pressure Drop Characteristics of H-Type Finned Tube Banks,” Energies,
7(11), pp. 7094–7104.

[CrossRef]
Kays,
W. M.
, and
London,
A. L.
, 1998, Compact Heat Exchangers, 3rd ed.,
Krieger Publishing Company,
Malabar, FL.

Guo,
Z. Y.
,
Li,
D. Y.
, and
Wang,
B. X.
, 1998, “
A Novel Concept for Convective Heat Transfer Enhancement,” Int. J. Heat Mass Transfer,
41(14), pp. 2221–2225.

[CrossRef]
Tian,
L. T.
,
He,
Y. L.
,
Lei,
Y. G.
, and
Tao,
W. Q.
, 2009, “
Numerical Study of Fluid Flow and Heat Transfer in a Flat Plate Channel With Longitudinal Vortex Generators by Applying Field Synergy Principle Analysis,” Int. Commun. Heat Mass Transfer,
36(2), pp. 111–120.

[CrossRef]
Shah,
R. K.
, and
London,
A. L.
, 1971, “
Laminar Flow Forced Convection Heat Transfer and Flow Friction in Straight and Curved Ducts—A Summary of Analytical Solutions,” Department of Mechanical Engineering, Stanford University, Stanford, CA, Technical Report No. 75.

Leu,
J. S.
,
Wu,
Y. H.
, and
Jang,
J. Y.
, 2004, “
Heat Transfer and Fluid Flow Analysis in Plate-Fin and Tube Heat Exchangers With a Pair of Block Shape Vortex Generators,” Int. J. Heat Mass Transfer,
47(19–20), pp. 4327–4338.

[CrossRef]