0
Research Papers: Evaporation, Boiling, and Condensation

Influence of Copper Oxide on Femtosecond Laser Surface Processed Copper Pool Boiling Heat Transfer Surfaces

[+] Author and Article Information
Corey Kruse

Mechanical and Materials Engineering,
University of Nebraska—Lincoln,
W342 Nebraska Hall,
Lincoln, NE 68588
e-mail: Coreykruse_08@hotmail.com

Alfred Tsubaki

Electrical and Computer Engineering,
University of Nebraska—Lincoln,
N209 Scott Engineering Center,
Lincoln, NE 68588
e-mail: alfredtsubaki@gmail.com

Craig Zuhlke

Electrical and Computer Engineering,
University of Nebraska—Lincoln,
N209 Scott Engineering Center,
Lincoln, NE 68588
e-mail: czuhlke@unl.edu

Dennis Alexander

Electrical and Computer Engineering,
University of Nebraska—Lincoln,
N209 Scott Engineering Center,
Lincoln, NE 68588
e-mail: Dalexander1@unl.edu

Mark Anderson

Mechanical and Materials Engineering,
University of Nebraska—Lincoln,
W342 Nebraska Hall,
Lincoln, NE 68588
e-mail: mark.anderson@huskers.unl.edu

Edwin Peng

Mechanical and Materials Engineering,
University of Nebraska—Lincoln,
W342 Nebraska Hall,
Lincoln, NE 68588
e-mail: edwin.peng@huskers.unl.edu

Jeff Shield

Mechanical and Materials Engineering,
University of Nebraska—Lincoln,
W342 Nebraska Hall,
Lincoln, NE 68588
e-mail: jshield@unl.edu

Sidy Ndao

Mechanical and Materials Engineering,
University of Nebraska—Lincoln,
W342 Nebraska Hall,
Lincoln, NE 68588
e-mail: Sndao2@unl.edu

George Gogos

Mechanical and Materials Engineering,
University of Nebraska—Lincoln,
W342 Nebraska Hall,
Lincoln, NE 68588
e-mail: ggogos@unl.edu

1Corresponding author.

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF HEAT TRANSFER. Manuscript received August 15, 2018; final manuscript received March 7, 2019; published online March 27, 2019. Assoc. Editor: Milind A. Jog.

J. Heat Transfer 141(5), 051503 (Mar 27, 2019) (9 pages) Paper No: HT-18-1530; doi: 10.1115/1.4043129 History: Received August 15, 2018; Revised March 07, 2019

Pool boiling heat transfer with the use of femtosecond laser surface processing (FLSP) on copper surfaces has been studied. FLSP creates a self-organized micro/nanostructured surface. In the previous pool boiling heat transfer studies with stainless steel FLSP surfaces, enhancements in critical heat flux (CHF) and heat transfer coefficients (HTCs) were observed compared to the polished reference surface. However, this study shows that copper FLSP surfaces exhibit reductions in both CHF and HTCs consistently. This reduction in heat transfer performance is a result of an oxide layer that covers the surface of the microstructures and acts as an insulator due to its low thermal conductivity. The oxide layer was observed and measured with the use of a focused ion beam milling process and found to have thickness of a few microns. The thickness of this oxide layer was found to be related to the laser fluence parameter. As the fluence increased, the oxide layer thickness increased and the heat transfer performance decreased. For a specific test surface, the oxide layer was selectively removed by a chemical etching process. The removal of the oxide layer resulted in an enhancement in the HTC compared to the polished reference surface. Although the original FLSP copper surfaces were unable to outperform the polished reference curve, this experiment illustrates how an oxide layer can significantly affect heat transfer results and dominate other surface characteristics (such as increased surface area and wicking) that typically lead to heat transfer enhancement.

FIGURES IN THIS ARTICLE
<>
Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.

References

Lu, M.-C. , Chen, R. , Srinivasan, V. , Carey, V. P. , and Majumdar, A. , 2011, “ Critical Heat Flux of Pool Boiling on Si Nanowire Array-Coated Surfaces,” Int. J. Heat Mass Transfer, 54(25–26), pp. 5359–5367. [CrossRef]
Yao, Z. , Lu, Y.-W. , and Kandlikar, S. G. , 2011, “ Effects of Nanowire Height on Pool Boiling Performance of Water on Silicon Chips,” Int. J. Therm. Sci., 50(11), pp. 2084–2090. [CrossRef]
Yao, Z. , Lu, Y.-W. , and Kandlikar, S. G. , 2012, “ Micro/Nano Hierarchical Structure in Microchannel Heat Sink for Boiling Enhancement,” IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS), Paris, France, Jan. 28–Feb. 2, pp. 285–288.
Rahman, M. , King, S. M. , Olceroglu, E. , and Mccarthy, M. , 2012, “ Nucleate Boiling on Biotemplated Nanostructured Surfaces,” ASME Paper No. IMECE2012-88014.
Chen, R. , Lu, M.-C. , Srinivasan, V. , Wang, Z. , Cho, H. H. , and Majumdar, A. , 2009, “ Nanowires for Enhanced Boiling Heat Transfer,” Nano Lett., 9(2), pp. 548–553. [CrossRef] [PubMed]
Betz, A. R. , Jenkins, J. , Kim, C.-J. “Cj”. , and Attinger, D. , 2013, “ Boiling Heat Transfer on Superhydrophilic, Superhydrophobic, and Superbiphilic Surfaces,” Int. J. Heat Mass Transfer, 57(2), pp. 733–741. [CrossRef]
Chu, K.-H. , Enright, R. , and Wang, E. N. , 2012, “ Structured Surfaces for Enhanced Pool Boiling Heat Transfer,” Appl. Phys. Lett., 100(24), p. 241603. [CrossRef]
Das, S. , and Bhaumik, S. , 2014, “ Enhancement of Nucleate Pool Boiling Heat Transfer on Titanium Oxide Thin Film Surface,” Arab. J. Sci. Eng., 39(10), pp. 7385–7395. [CrossRef]
Feng, B. , Weaver, K. , and Peterson, G. P. , 2012, “ Enhancement of Critical Heat Flux in Pool Boiling Using Atomic Layer Deposition of Alumina,” Appl. Phys. Lett., 100(5), p. 53120. [CrossRef]
Forrest, E. , Williamson, E. , Buongiorno, J. , Hu, L.-W. , Rubner, M. , and Cohen, R. , 2010, “ Augmentation of Nucleate Boiling Heat Transfer and Critical Heat Flux Using Nanoparticle Thin-Film Coatings,” Int. J. Heat Mass Transfer, 53(1–3), pp. 58–67. [CrossRef]
Hendricks, T. J. , Krishnan, S. , Choi, C. , Chang, C.-H. , and Paul, B. , 2010, “ Enhancement of Pool-Boiling Heat Transfer Using Nanostructured Surfaces on Aluminum and Copper,” Int. J. Heat Mass Transfer, 53(15–16), pp. 3357–3365. [CrossRef]
Im, Y. , Dietz, C. , Lee, S. S. , and Joshi, Y. , 2012, “ Flower-Like CuO Nanostructures for Enhanced Boiling,” Nanoscale Microscale Thermophys. Eng., 16(3), pp. 145–153. [CrossRef]
Li, C. , Wang, Z. , Wang, P.-I. , Peles, Y. , Koratkar, N. , and Peterson, G. P. , 2008, “ Nanostructured Copper Interfaces for Enhanced Boiling,” Small, 4(8), pp. 1084–1088. [CrossRef] [PubMed]
McHale, J. P. , Garimella, S. V. , Fisher, T. S. , and Powell, G. A. , 2011, “ Pool Boiling Performance Comparison of Smooth and Sintered Copper Surfaces With and Without Carbon Nanotubes,” Nanoscale Microscale Thermophys. Eng., 15(3), pp. 133–150. [CrossRef]
Saeidi, D. , and Alemrajabi, AA. , 2013, “ Experimental Investigation of Pool Boiling Heat Transfer and Critical Heat Flux of Nanostructured Surfaces,” Int. J. Heat Mass Transfer, 60, pp. 440–449. [CrossRef]
Tang, Y. , Tang, B. , Li, Q. , Qing, J. , Lu, L. , and Chen, K. , 2013, “ Pool-Boiling Enhancement by Novel Metallic Nanoporous Surface,” Exp. Therm. Fluid Sci., 44, pp. 194–198. [CrossRef]
Xu, P. , Li, Q. , and Xuan, Y. , 2015, “ Enhanced Boiling Heat Transfer on Composite Porous Surface,” Int. J. Heat Mass Transfer, 80, pp. 107–114. [CrossRef]
Ahn, H. S. , Lee, C. , Kim, H. , Jo, H. , Kang, S. , Kim, J. , Shin, J. , and Kim, M. H. , 2010, “ Pool Boiling CHF Enhancement by Micro/Nanoscale Modification of Zircaloy-4 Surface,” Nucl. Eng. Des., 240(10), pp. 3350–3360. [CrossRef]
Ahn, H. S. , Lee, C. , Kim, J. , and Kim, M. H. , 2012, “ The Effect of Capillary Wicking Action of Micro/Nano Structures on Pool Boiling Critical Heat Flux,” Int. J. Heat Mass Transfer, 55(1–3), pp. 89–92. [CrossRef]
Cieśliński, J. , 2002, “ Nucleate Pool Boiling on Porous Metallic Coatings,” Exp. Therm. Fluid Sci., 25(7), pp. 557–564. [CrossRef]
Phan, H. T. , Caney, N. , Marty, P. , Colasson, S. , and Gavillet, J. , 2009, “ Surface Wettability Control by Nanocoating: The Effects on Pool Boiling Heat Transfer and Nucleation Mechanism,” Int. J. Heat Mass Transfer, 52(23–24), pp. 5459–5471. [CrossRef]
Seo, G. H. , Hwang, H. , Yoon, J. , Yeo, T. , Son, H. H. , Jeong, U. , Jeun, G. , Choi, W. , and Kim, S. J. , 2015, “ Enhanced Critical Heat Flux With Single-Walled Carbon Nanotubes Bonded on Metal Surfaces,” Exp. Therm. Fluid Sci., 60, pp. 138–147. [CrossRef]
Kruse, C. M. , Anderson, T. , Wilson, C. , Zuhlke, C. , Alexander, D. , Gogos, G. , and Ndao, S. , 2015, “ Enhanced Pool-Boiling Heat Transfer and Critical Heat Flux on Femtosecond Laser Processed Stainless Steel Surfaces,” Int. J. Heat Mass Transfer, 82, pp. 109–116. [CrossRef]
Kruse, C. , Lucis, M. , Shield, J. , Anderson, T. , Zuhlke, C. , Alexander, D. , Gogos, P. G. , and Ndao, S. , 2017, “ Effects of Femtosecond Laser Surface Processed Nanoparticle Layers on Pool Boiling Heat Transfer Performance,” ASME J. Therm. Sci. Eng. Appl., 10(3), p. 031009. [CrossRef]
Kruse, C. M. , Peng, E. , Zuhlke, C. A. , Shield, J. E. , Alexander, D. R. , Ndao, S. , and Gogos, G. , 2017, “ Role of Copper Oxide Layer on Pool Boiling Performance With Femtosecond Laser Processed Copper Surfaces,” ASME Paper No. ICNMM2017-5574.
Zuhlke, C. A. , Anderson, T. P. , and Alexander, D. R. , 2013, “ Formation of Multiscale Surface Structures on Nickel Via Above Surface Growth and Below Surface Growth Mechanisms Using Femtosecond Laser Pulses,” Opt. Express, 21(7), pp. 8460–8473. [CrossRef] [PubMed]
Zuhlke, C. A. , Anderson, T. P. , and Alexander, D. R. , 2013, “ Fundamentals of Layered Nanoparticle Covered Pyramidal Structures Formed on Nickel During Femtosecond Laser Surface Interactions,” Appl. Surf. Sci., 283, pp. 648–653.
Zuhlke, C. A. , Anderson, T. P. , and Alexander, D. R. , 2013, “ Comparison of the Structural and Chemical Composition of Two Unique Micro/Nanostructures Produced by Femtosecond Laser Interactions on Nickel,” Appl. Phys. Lett., 103(12), p. 121603. [CrossRef]
Zuhlke, C. A. , Alexander, D. R. , Bruce, J. C. , Ianno, N. J. , Kamler, C. A. , and Yang, W. , 2010, “ Self Assembled Nanoparticle Aggregates From Line Focused Femtosecond Laser Ablation,” Opt. Express, 18(5), pp. 4329–4339. [CrossRef] [PubMed]
Tsubaki, A. T. A. T. , Koten, M. A. M. A. , Lucis, M. J. M. J. , Zuhlke, C. , Ianno, N. , Shield, J. E. J. E. , and Alexander, D. R. D. R. , 2017, “ Formation of Aggregated Nanoparticle Spheres Through Femtosecond Laser Surface Processing,” Appl. Surf. Sci., 419, pp. 778–787. [CrossRef] [PubMed]
Kruse, C. , Tsubaki, A. , Zuhlke, C. , Anderson, T. , Alexander, D. , Gogos, G. , and Ndao, S. , 2016, “ Secondary Pool Boiling Effects,” Appl. Phys. Lett., 108(5), p. 051602. [CrossRef] [PubMed]
Jaikumar, A. , and Kandlikar, S. G. , 2017, “ Pool Boiling Inversion Through Bubble Induced Macroconvection,” Appl. Phys. Lett., 110(9), p. 094107. [CrossRef]
Wang, Q. , and Chen, R. , 2018, “ Ultrahigh Flux Thin Film Boiling Heat Transfer Through Nanoporous Membranes,” Nano Lett., 18(5), pp. 3096–3103. [CrossRef] [PubMed]

Figures

Grahic Jump Location
Fig. 1

Schematic of the FLSP process used for surface functionalization

Grahic Jump Location
Fig. 2

Cross section schematic of the pool boiling test section

Grahic Jump Location
Fig. 3

SEM images of the pool boiling surfaces tested. Left: LF series, right: HF series.

Grahic Jump Location
Fig. 4

Pool boiling curves for the LF series

Grahic Jump Location
Fig. 5

HTCs with respect to heat flux for the LF series

Grahic Jump Location
Fig. 6

Pool boiling curves for HF series

Grahic Jump Location
Fig. 7

HTCs with respect to heat flux for HF series

Grahic Jump Location
Fig. 8

CHF values with respect to laser fluence for copper FLSP surfaces

Grahic Jump Location
Fig. 9

Cross section SEM images for various FLSP copper surfaces. The inset image is of the cross sectioned microstructure at a lower magnification.

Grahic Jump Location
Fig. 10

SEM images of LF4 and HF4 before and after etching and after cross sectioning

Grahic Jump Location
Fig. 11

Pool boiling curves for FLSP copper surfaces with and without the oxide layer

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In