Hajati,
A.
, and
Kim,
S.-G.
, 2011, “
Ultra-Wide Bandwidth Piezoelectric Energy Harvesting,” Appl. Phys. Lett.,
99(8), p. 083105.

[CrossRef]
Acar,
C.
, and
Shkel,
A.
, 2008, MEMS Vibratory Gyroscopes: Structural Approaches to Improve Robustness,
Springer Science & Business Media, New York.

Sheikholeslami,
M.
, and
Rokni,
H. B.
, 2017, “
Simulation of Nanofluid Heat Transfer in Presence of Magnetic Field: A Review,” Int. J. Heat Mass Transfer,
115(Part B), pp. 1203–1233.

[CrossRef]
Morini,
G. L.
, 2004, “
Single-Phase Convective Heat Transfer in Microchannels: A Review of Experimental Results,” Int. J. Therm. Sci.,
43(7), pp. 631–651.

[CrossRef]
Tullius,
J. F.
,
Vajtai,
R.
, and
Bayazitoglu,
Y.
, 2011, “
A Review of Cooling in Microchannels,” Heat Transfer Eng.,
32(7–8), pp. 527–541.

[CrossRef]
Omidi,
M.
,
Farhadi,
M.
, and
Jafari,
M.
, 2017, “
A Comprehensive Review on Double Pipe Heat Exchangers,” Appl. Therm. Eng.,
110(Suppl. C), pp. 1075–1090.

[CrossRef]
Safaei,
M. R.
,
Gooarzi,
M.
,
Akbari,
O. A.
,
Shadloo,
M. S.
, and
Dahari,
M.
, 2016, “
Performance Evaluation of Nanofluids in an Inclined Ribbed Microchannel for Electronic Cooling Applications,” Electronics Cooling,
InTech, New York.

Akbari,
O. A.
,
Toghraie,
D.
,
Karimipour,
A.
,
Safaei,
M. R.
,
Goodarzi,
M.
,
Alipour,
H.
, and
Dahari,
M.
, 2016, “
Investigation of Rib's Height Effect on Heat Transfer and Flow Parameters of Laminar Water–Al_{2}O_{3} Nanofluid in a Rib-Microchannel,” Appl. Math. Comput.,
290(Suppl. C), pp. 135–153.

M'Hamed,
B.
,
Sidik,
N. A. C.
,
Yazid,
M. N. A. W. M.
,
Mamat,
R.
,
Najafi,
G.
, and
Kefayati,
G. H. R.
, 2016, “
A Review on Why Researchers Apply External Magnetic Field on Nanofluids,” Int. Commun. Heat Mass Transfer,
78(Suppl. C), pp. 60–67.

[CrossRef]
Tretheway,
D. C.
, and
Meinhart,
C. D.
, 2002, “
Apparent Fluid Slip at Hydrophobic Microchannel Walls,” Phys. Fluids,
14(3), pp. L9–L12.

[CrossRef]
Karimipour,
A.
,
D'Orazio,
A.
, and
Shadloo,
M. S.
, 2017, “
The Effects of Different Nano Particles of Al

_{2}O

_{3} and Ag on the MHD Nano Fluid Flow and Heat Transfer in a Microchannel Including Slip Velocity and Temperature Jump,” Phys. E,
86, pp. 146–153.

[CrossRef]
Abbaszadeh,
M.
,
Ababaei,
A.
,
Arani,
A. A. A.
, and
Sharifabadi,
A. A.
, 2017, “
MHD Forced Convection and Entropy Generation of CuO-Water Nanofluid in a Microchannel Considering Slip Velocity and Temperature Jump,” J. Braz. Soc. Mech. Sci. Eng.,
39(3), pp. 775–790.

[CrossRef]
Karimipour,
A.
, and
Afrand,
M.
, 2016, “
Magnetic Field Effects on the Slip Velocity and Temperature Jump of Nanofluid Forced Convection in a Microchannel,” Proc. Inst. Mech. Eng., Part C,
230(11), pp. 1921–1936.

[CrossRef]
Aminossadati,
S.
,
Raisi,
A.
, and
Ghasemi,
B.
, 2011, “
Effects of Magnetic Field on Nanofluid Forced Convection in a Partially Heated Microchannel,” Int. J. Non-Linear Mech.,
46(10), pp. 1373–1382.

[CrossRef]
Morini,
G. L.
, 2005, “
Viscous Heating in Liquid Flows in Micro-Channels,” Int. J. Heat Mass Transfer,
48(17), pp. 3637–3647.

[CrossRef]
Hung,
Y. M.
, 2010, “
Analytical Study on Forced Convection of Nanofluids With Viscous Dissipation in Microchannels,” Heat Transfer Eng.,
31(14), pp. 1184–1192.

[CrossRef]
Azad,
A.
,
Rahman,
M.
, and
Öztop,
H. F.
, 2014, “
Effects of Joule Heating on Magnetic Field Inside a Channel Along With a Cavity,” Procedia Eng.,
90, pp. 389–396.

[CrossRef]
Jamalabadi,
M. A.
, and
Park,
J. H.
, 2014, “
Thermal Radiation, Joule Heating, and Viscous Dissipation Effects on MHD Forced Convection Flow With Uniform Surface Temperature,” Open J. Fluid Dyn.,
4(2), pp. 125–132.

[CrossRef]
Hamdan,
M. A.
,
Al-Assaf,
A. H.
, and
Al-Nimr,
M. A.
, 2016, “
The Effect of Slip Velocity and Temperature Jump on the Hydrodynamic and Thermal Behaviors of MHD Forced Convection Flows in Horizontal Microchannels,” Iran. J. Sci. Technol., Trans. Mech. Eng.,
40(2), pp. 95–103.

[CrossRef]
Mehrizi,
A. A.
,
Farhadi,
M.
,
Sedighi,
K.
, and
Delavar,
M. A.
, 2013, “
Effect of Fin Position and Porosity on Heat Transfer Improvement in a Plate Porous Media Heat Exchanger,” J. Taiwan Inst. Chem. Eng.,
44(3), pp. 420–431.

[CrossRef]
Afrouz,
H. H.
,
Sedighi,
K.
,
Farhadi,
M.
, and
Fattahi,
E.
, 2012, “
Dispersion and Deposition of Micro Particles Over Two Square Obstacles in a Channel Via Hybrid Lattice Boltzmann Method and Discrete Phase Model,” Int. J. Eng. Trans. B: Appl.,
25(3 (C)), pp. 257–266.

Afrouzi,
H. H.
,
Farhadi,
M.
, and
Mehrizi,
A. A.
, 2013, “
Numerical Simulation of Microparticles Transport in a Concentric Annulus by Lattice Boltzmann Method,” Adv. Powder Technol.,
24(3), pp. 575–584.

[CrossRef]
Afrouzi,
H. H.
,
Sedighi,
K.
,
Farhadi,
M.
, and
Moshfegh,
A.
, 2015, “
Lattice Boltzmann Analysis of Micro-Particles Transport in Pulsating Obstructed Channel Flow,” Comput. Math. Appl.,
70(5), pp. 1136–1151.

[CrossRef]
Pourmirzaagha,
H.
,
Afrouzi,
H. H.
, and
Mehrizi,
A. A.
, 2015, “
Nano-Particles Transport in a Concentric Annulus: A Lattice Boltzmann Approach,” J. Theor. Appl. Mech.,
53(3), pp. 683–695.

[CrossRef]
Mehrizi,
A. A.
,
Farhadi,
M.
,
Afroozi,
H. H.
,
Sedighi,
K.
, and
Darz,
A. R.
, 2012, “
Mixed Convection Heat Transfer in a Ventilated Cavity With Hot Obstacle: Effect of Nanofluid and Outlet Port Location,” Int. Commun. Heat Mass Transfer,
39(7), pp. 1000–1008.

[CrossRef]
Tilehboni,
S. M.
,
Fattahi,
E.
,
Afrouzi,
H. H.
, and
Farhadi,
M.
, 2015, “
Numerical Simulation of Droplet Detachment From Solid Walls Under Gravity Force Using Lattice Boltzmann Method,” J. Mol. Liq.,
212, pp. 544–556.

[CrossRef]
Arumuga Perumal,
D.
, and
Dass,
A. K.
, 2015, “
A Review on the Development of Lattice Boltzmann Computation of Macro Fluid Flows and Heat Transfer,” Alexandria Eng. J.,
54(4), pp. 955–971.

[CrossRef]
Karimipour,
A.
,
Nezhad,
A. H.
,
D'Orazio,
A.
,
Esfe,
M. H.
,
Safaei,
M. R.
, and
Shirani,
E.
, 2015, “
Simulation of Copper–Water Nanofluid in a Microchannel in Slip Flow Regime Using the Lattice Boltzmann Method,” Eur. J. Mech.-B/Fluids,
49, pp. 89–99.

[CrossRef]
Xiang,
X.
,
Wang,
Z.
, and
Shi,
B.
, 2012, “
Modified Lattice Boltzmann Scheme for Nonlinear Convection Diffusion Equations,” Commun. Nonlinear Sci. Numer. Simul.,
17(6), pp. 2415–2425.

[CrossRef]
Agarwal,
R. K.
, 2003, “
Lattice Boltzmann Simulations of Magnetohydrodynamic Slip Flow in Microchannels,” Bull. Am. Phys. Soc.,
48(10), p. 93.

Chatterjee,
D.
, and
Amiroudine,
S.
, 2011, “
Lattice Boltzmann Simulation of Thermofluidic Transport Phenomena in a DC Magnetohydrodynamic (MHD) Micropump,” Biomed. Microdevices,
13(1), pp. 147–157.

[CrossRef] [PubMed]
Kalteh,
M.
, and
Abedinzadeh,
S. S.
, 2018, “
Numerical Investigation of MHD Nanofluid Forced Convection in a Microchannel Using Lattice Boltzmann Method,” Iran. J. Sci. Technol., Trans. Mech. Eng.,
42(1), pp. 23–34.

[CrossRef]
Kalteh,
M.
, and
Hasani,
H.
, 2014, “
Lattice Boltzmann Simulation of Nanofluid Free Convection Heat Transfer in an L-Shaped Enclosure,” Superlattices Microstruct.,
66, pp. 112–128.

[CrossRef]
Meyer,
J. P.
,
Adio,
S. A.
,
Sharifpur,
M.
, and
Nwosu,
P. N.
, 2016, “
The Viscosity of Nanofluids: A Review of the Theoretical, Empirical, and Numerical Models,” Heat Transfer Eng.,
37(5), pp. 387–421.

[CrossRef]
Patel,
H. E.
,
Anoop,
K.
,
Sundararajan,
T.
, and
Das,
S. K.
, 2006, “
A Micro-Convection Model for Thermal Conductivity of Nanofluids,” International Heat Transfer Conference 13, Sydney, Australia, Aug. 13–18, pp. 863–869.

Mohamad,
A. A.
, 2011, Lattice Boltzmann Method: Fundamentals and Engineering Applications With Computer Codes,
Springer Science & Business Media, New York.

Guo,
Z.
,
Zheng,
C.
, and
Shi,
B.
, 2002, “
Discrete Lattice Effects on the Forcing Term in the Lattice Boltzmann Method,” Phys. Rev. E,
65(4), p. 046308.

[CrossRef]
Bin,
D.
,
Bao-Chang,
S.
, and
Guang-Chao,
W.
, 2005, “
A New Lattice Bhatnagar–Gross–Krook Model for the Convection–Diffusion Equation With a Source Term,” Chin. Phys. Lett.,
22(2), p. 267.

[CrossRef]
White,
F. M.
, and
Corfield,
I.
, 2006, Viscous Fluid Flow,
McGraw-Hill Higher Education,
Boston, MA.

Wang,
J.
,
Wang,
M.
, and
Li,
Z.
, 2007, “
A Lattice Boltzmann Algorithm for Fluid–Solid Conjugate Heat Transfer,” Int. J. Thermal Sci.,
46(3), pp. 228–234.

[CrossRef]
Mohammed,
H.
,
Bhaskaran,
G.
,
Shuaib,
N.
, and
Saidur,
R.
, 2011, “
Heat Transfer and Fluid Flow Characteristics in Microchannels Heat Exchanger Using Nanofluids: A Review,” Renewable Sustainable Energy Rev.,
15(3), pp. 1502–1512.

[CrossRef]
Zarita,
R.
, and
Hachemi,
M.
, 2014, “
Microchannel Fluid Flow and Heat Transfer by Lattice Boltzmann Method,” Fourth Micro and Nano Flows Conference, London, Sept. 7–10.

Afshar,
H.
,
Shams,
M.
,
Nainian,
S.
, and
Ahmadi,
G.
, 2009, “
Microchannel Heat Transfer and Dispersion of Nanoparticles in Slip Flow Regime With Constant Heat Flux,” Int. Commun. Heat Mass Transfer,
36(10), pp. 1060–1066.

[CrossRef]
Davaa,
G.
,
Shigechi,
T.
, and
Momoki,
S.
, 2004, “
Effect of Viscous Dissipation on Fully Developed Heat Transfer of Non-Newtonian Fluids in Plane Laminar Poiseuille-Couette Flow,” Int. Commun. Heat Mass Transfer,
31(5), pp. 663–672.

[CrossRef]
Manay,
E.
, and
Sahin,
B.
, 2017, “
Heat Transfer and Pressure Drop of Nanofluids in a Microchannel Heat Sink,” Heat Transfer Eng.,
38(5), pp. 510–522.

[CrossRef]
Bejan,
A.
, 2013, Convection Heat Transfer,
Wiley, Hoboken, NJ.

Kalteh,
M.
, 2013, “
Investigating the Effect of Various Nanoparticle and Base Liquid Types on the Nanofluids Heat and Fluid Flow in a Microchannel,” Appl. Math. Modell.,
37(18–19), pp. 8600–8609.

[CrossRef]