0
Research Papers: Experimental Techniques

Calibration Tools for Scanning Thermal Microscopy Probes Used in Temperature Measurement Mode

[+] Author and Article Information
T. P. Nguyen, S. Euphrasie, P. Vairac

FEMTO-ST Institute,
UMR 6174,
Université de Franche-Comté,
CNRS, ENSMM, UTBM,
Besançon 25030, France

L. Thiery

FEMTO-ST Institute,
UMR 6174,
Université de Franche-Comté,
CNRS, ENSMM, UTBM,
Besançon 25030, France
e-mail: laurent.thiery@univ-fcomte.fr

E. Lemaire, S. Khan, D. Briand

Ecole Polytechnique Fédérale de Lausanne,
Soft Transducers Laboratory,
Neuchâtel CH-2002, Switzerland

L. Aigouy

LPEM, ESPCI Paris,
Paris 75005, France;
CNRS, PSL Research University,
Sorbonne Universités,
Paris 75006, France

S. Gomes

CETHIL,
UMR5008,
Univ Lyon
CNRS,
INSA-Lyon,
Université Claude Bernard Lyon 1,
Villeurbanne 69621, France

Contributed by the Heat Transfer Division of ASME for publication in the JOURNAL OF HEAT TRANSFER. Manuscript received October 11, 2018; final manuscript received March 26, 2019; published online May 14, 2019. Assoc. Editor: Srinath V. Ekkad.

J. Heat Transfer 141(7), 071601 (May 14, 2019) (9 pages) Paper No: HT-18-1667; doi: 10.1115/1.4043381 History: Received October 11, 2018; Revised March 26, 2019

We demonstrate the functionality of a new active thermal microchip dedicated to the temperature calibration of scanning thermal microscopy (SThM) probes. The silicon micromachined device consists in a suspended thin dielectric membrane in which a heating resistor with a circular area of 50 μm in diameter was embedded. A circular calibration target of 10 μm in diameter was patterned at the center and on top of the membrane on which the SThM probe can land. This target is a resistive temperature detector (RTD) that measures the surface temperature of the sample at the level of the contact area. This allows evaluating the ability of any SThM probe to measure a surface temperature in ambient air conditions. Furthermore, by looking at the thermal balance of the device, the heat dissipated through the probe and the different thermal resistances involved at the contact can be estimated. A comparison of the results obtained for two different SThM probes, microthermocouples and probes with a fluorescent particle is presented to validate the functionality of the micromachined device. Based on experiments and simulations, an analysis of the behavior of probes allows pointing out their performances and limits depending on the sample characteristics whose role is always preponderant. Finally, we also show that a smaller area of the temperature sensor would be required to assess the local disturbance at the contact point.

FIGURES IN THIS ARTICLE
<>
Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.

References

Bontempi, A. , Thiery, L. , Teyssieux, D. , Briand, D. , and Vairac, P. , 2013, “ Quantitative Thermal Microscopy Using Thermoelectric Probe in Passive Mode,” Rev. Sci. Instrum., 84(10), p. 103703. [CrossRef] [PubMed]
Bontempi, A. , Nguyen, T. P. , Salut, R. , Thiery, L. , Teyssieux, D. , and Vairac, P. , 2016, “ Scanning Thermal Microscopy Based on a Quartz Tuning Fork and a Microthermocouple in Active Mode (2ω Method),” Rev. Sci. Instrum., 87(6), p. 063702. [CrossRef] [PubMed]
Gomes, S. , and Lefevre, S. , 2008, Advanced Techniques and Applications on Scanning Probe Microscopy, F. H. Lei ed., Research Signpost, Kerala, India, pp. 157–195.
Gomes, S. , Assy, A. , and Chapuis, P. O. , 2015, “ Scanning Thermal Microscopy: A Review,” Phys. Status Solid A, 212(3), pp. 477–494. [CrossRef]
Thiery, L. , Toullier, S. , Teyssieux, D. , and Briand, D. , 2008, “ Thermal Contact Calibration Between a Thermocouple Probe and a Microhotplate,” ASME J. Heat Transfer, 130(9), p. 091601. [CrossRef]
Jo, I. , Hsu, I. K. , Lee, Y. J. , Sadeghi, M. M. , Kim, S. , Cronin, S. , Tutuc, E. , Banerjee, S. K. , Yao, Z. , and Shi, L. , 2011, “ Low-Frequency Acoustic Phonon Temperature Distribution in Electrically Biased Grapheme,” Nanoletters, 11(1), pp. 85–90. [CrossRef]
Soudi, A. , Dawson, R. D. , and Gu, Y. , 2011, “ Quantitative Heat Dissipation Characteristics in Current-Carrying GaN Nanowires Probed by Combining Scanning Thermal Microscopy and Spatially Resolved Raman Spectroscopy,” ACS Nano, 5(1), pp. 255–262. [CrossRef] [PubMed]
Yu, Y. J. , Han, M. Y. , Berciaud, S. , Georgescu, A. B. , Heinz, T. F. , Brus, L. E. , Kim, K. S. , and Kim, P. , 2011, “ High-Resolution Spatial Mapping of the Temperature Distribution of a Joule Self-Heated Grapheme Nanoribbon,” Appl. Phys. Lett., 99(18), p. 183105. [CrossRef]
Janus, P. , Szmigiel, D. , Weisheit, M. , Wielgoszewski, G. , Ritz, Y. , Grabiec, P. , Hecker, M. , Gotszalk, T. , Sulecki, P. , and Zschech, E. , 2010, “ Novel SThM Nanoprobe for Thermal Properties Investigation of Micro- and Nanoelectronic Devices,” Microelec. Eng., 87(5–8), pp. 1370–1374. [CrossRef]
Wielgoszewski, G. , Sulecki, P. , Janus, P. , Grabiec, P. , Zschech, E. , and Gotszalk, T. , 2011, “ A High Resolution Measurement System for Novel Scanning Thermal Microscopy Resistive Nanoprobe,” Meas. Sci. Technol., 22, p. 094023. [CrossRef]
Saïdi, E. , Samson, B. , Aigouy, L. , Volz, S. , Löw, P. , Bergaud, C. , and Mortier, M. , 2009, “ Scanning Thermal Imaging by Near-Field Fluorescence Spectroscopy,” Nanotechnology, 20(11), p. 115703. [CrossRef] [PubMed]
Sadat, S. , Tan, A. , Chua, Y. J. , and Reddy, P. , 2010, “ Nanoscale Thermometry Using Point Contact Thermocouples,” Nanoletters, 10(7), pp. 2613–2617. [CrossRef]
Kim, K. , Chung, J. , Hwang, G. , Kwon, O. , and Lee, J. S. , 2011, “ Quantitative Measurements With Scanning Thermal Microscope by Preventing the Distorsion Due to the Heat Transfer Through the Air,” ACS Nano, 5(11), pp. 8700–8709. [CrossRef] [PubMed]
Kim, K. , Jeong, W. , Lee, W. , and Reddy, P. , 2012, “ Ultra-High Vacuum Scanning Thermal Microscopy for Nanometer Resolution Quantitative Thermometry,” ACS Nano, 6(5), pp. 4248–4257. [CrossRef] [PubMed]
Chung, J. , Kim, K. , Hwang, G. , Kwon, O. , Jung, S. , Lee, J. , Lee, J. W. , and Kim, G. T. , 2010, “ Quantitative Temperature Measurement of an Electrically Heated Carbon Nanotube Using the Null-Point Method,” Rev. Sci. Instrum., 81(11), p. 114901. [CrossRef] [PubMed]
Hwang, G. , Chung, J. , and Kwon, O. , 2014, “ Enabling Low-Noise Null-Point Scanning Thermal Microscopy by the Optimization of Scanning Thermal Microscope Probe Through a Rigorous Theory of Quantitative Measurement,” Rev. Sci. Instrum., 85(11), p. 114901. [CrossRef] [PubMed]
Menges, F. , Mensch, P. , Schmid, H. , Riel, H. , Stemmer, A. , and Gostmann, B. , 2016, “ Temperature Mapping of Operating Nanoscale Devices by Scanning Probe Thermometry,” Nat. Commun., 7, p. 10874. [CrossRef] [PubMed]
Ge, Y. , Zhang, Y. , Booth, J. A. , Weaver, J. M. R. , and Dobson, P. S. , 2016, “ Quantification of Probe–Sample Interactions of a Scanning Thermal Microscope Using a Nanofabricated Calibration Sample Having Programmable Size,” Nanotechnology, 27(32), p. 325503. [CrossRef] [PubMed]
Varpula, A. , Timofeev, A. V. , Shchepetov, A. , Grigoras, K. , Hassel, J. , Ahopelto, J. , Ylilammi, M. , and Prunnila, M. , 2017, “ Thermoelectric Thermal Detectors Based on Ultra-Thin Heavily Doped Single-Crystal Silicon Membranes,” Appl. Phys. Lett., 110(26), p. 262101. [CrossRef]
Nguyen, T. P. , Lemaire, E. , Euphrasie, S. , Thiery, L. , Teyssieux, D. , Briand, D. , and Vairac, P. , 2018, “ Microfabricated High Temperature Sensing Platform Dedicated to Scanning Thermal Microscopy (SThM),” Sens. Actuators A, 275, pp. 109–118. [CrossRef]
Assy, A. , Lin, H. J. , Schoenauer-Sebag, M. , Gredin, P. , Mortier, M. , Billot, L. , Chen, Z. , and Aigouy, L. , 2016, “ Nanoscale Thermometry With Fluorescent Yttrium-Based Er/Yb-Doped Fluoride Nanocrystals,” Sens. Actuators A, 250, pp. 71–77. [CrossRef]
Sarro, P. M. , Van Herwaarden, A. W. , and Van der Vlist, W. , 1994, “ A Silicon-Silicon Nitride Membrane Fabrication Process for Smart Thermal Sensors,” Sens. Actuators A, 42, pp. 666–671. [CrossRef]
Simon, I. , Barsan, N. , Bauer, M. , and Weimar, U. , 2001, “ Micromachined Metal Oxide Gas Sensors: Opportunities to Improve Sensor Performance,” Sens. Actuators B, 73(1), pp. 1–26. [CrossRef]
Rossi, C. , Briand, D. , Dumonteuil, M. , Camps, T. , Pham, P. Q. , and De Rooij, N. F. , 2006, “ Matrix of 10 × 10 Addressed Solid Propellant Microthrusters: Review of the Technologies,” Sens. Actuators A, 126(1), pp. 241–252. [CrossRef]
Konz, W. , Hildenbrand, J. , Bauersfeld, M. , Hartwig, S. , Lambrecht, A. , Lehmann, V. , and Wöllenstein, J. , 2005, “ Micromachined IR-Source With Excellent Blackbody Like Behaviour,” Proc. SPIE, 5836, pp. 540–548.
Plummer, J. D. , Deal, M. D. , and Griffin, P. B. , 2001, Silicon VLSI Technology: Fundamentals, Practice, and Modeling, Pearson, Techniques de l'Ingénieur, Saint-Denis, France.
Sultan, R. , Avery, A. D. , Underwood, J. M. , Mason, S. J. , Bassett, D. , and Zink, B. L. , 2013, “ Heat Transport by Long Mean Free Path Vibrations in Amorphous Silicon Nitride Near Room Temperature,” Phys. Rev. B, 87–21, p. 214305. [CrossRef]
Bardon, J. P. , and Cassagne, B. , 1981, “ Techniques de L'Ingénieur, Traité de Mesures Physiques,” Temperature de Surface, Mesures Par Contact, Pearson Education India Sevices, Chennai, India, Chap. R2732.
Majumdar, A. , 1999, “ Scanning Thermal Microscopy,” Annu. Rev. Mater. Sci., 29(1), pp. 505–585. [CrossRef]
Shi, L. , and Majumdar, A. , 2002, “ Thermal Transport Mechanisms at Nanoscale Point Contacts,” ASME J. Heat Transfer, 124(2), pp. 329–332. [CrossRef]
Gomes, S. , Trannoy, N. , and Grossel, P. , 1999, “ DC Thermal Microscopy: Study of the Thermal Exchange Between a Probe and a Sample,” Meas. Sci. Technol., 10, pp. 805–811. [CrossRef]
Lefevre, S. , Volz, S. , and Chapuis, P. O. , 2006, “ Nanoscale Heat Transfer at Contact Between a Hot Tip and a Substrate,” Int. J. Heat Mass Transfer, 49, pp. 251–258. [CrossRef]
Bontempi, A. , Teyssieux, D. , Friedt, J. M. , Thiery, L. , Hermelin, D. , and Vairac, P. , 2014, “ Photo-Thermal Quartz Tuning Fork Excitation for Dynamic Mode Atomic Force Microscope,” Appl. Phys. Lett., 105(15), p. 154104. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Calibration chips with heating area of 50 μm in diameter and RTD contact area of 10 μm in diameter: Optical images of device top view (a), central area top view (b), and schematic of the device cross section (c)

Grahic Jump Location
Fig. 2

FEM simulation temperature map obtained for an input power of 1.6 mW. Top view of the complete device (a) and zoom of the central area (b).

Grahic Jump Location
Fig. 3

Thermal configuration of a local temperature probe in contact with a hot surface

Grahic Jump Location
Fig. 4

Microwire thermocouple probe on QTF: (a) structure and connecting overview, (b) 1.3 μm wire junction, and (c) 5 μm wire junction SEM images

Grahic Jump Location
Fig. 5

SEM picture of an example of tungsten tip with a fluorescent nanocrystal glued at its end

Grahic Jump Location
Fig. 6

Temperature elevations from Ta as a function of the input power: for each of the four probes tested (Ts − Ta) and (Tm − Ta) measured by the RTD sensor without and with probe contact, respectively, and (Tp − Ta) given by the probe. TC1 and TC5 represent the thermocouple probes of 1.3 μm and 5 μm wire diameters, respectively, Fluo1 and Fluo 2 the two tungsten tip probes equipped with a fluorescent particle.

Grahic Jump Location
Fig. 7

Influence of the sample nature (Rm) on the resulting thermal response (τ) of the different probes, Re and Rc being extracted from Table 3

Grahic Jump Location
Fig. 8

TC1 probe 200 × 200 μm2 scan results at 1.6 mW of input power: (a) corrected temperature map, (b) RTD sensor response, (c) topography, (d) and (e) extracted temperatures along the x- and y-axis of image A superimposed with FEM simulated profiles

Grahic Jump Location
Fig. 9

FEM simulation temperature distribution along x-axis before contact (red line) and considering extracted values of (Rc + Re) of Table 3 representing the four probes contact effects with a 1 μm thermal contact radius

Grahic Jump Location
Fig. 10

FEM simulation x-axis temperature distributions: comparison between 1 μm (solid lines) and 200 nm (dashed lines) thermal contact radius

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In