Newest Issue

Research Papers: Evaporation, Boiling, and Condensation

J. Heat Transfer. 2017;139(10):101501-101501-9. doi:10.1115/1.4036599.

The effect of surface roughness on the pool boiling heat transfer of water was investigated on superhydrophilic aluminum surfaces. The formation of nanoscale protrusions on the aluminum surface was confirmed after immersing it in boiling water, which modified surface wettability to form a superhydrophilic surface. The effect of surface roughness was examined at different average roughness (Ra) values ranging from 0.11 to 2.93 μm. The boiling heat transfer coefficients increased with an increase in roughness owing to the increased number of cavities. However, the superhydrophilic aluminum surfaces exhibited degradation of the heat transfer coefficients when compared with copper surfaces owing to the flooding of promising cavities. The superhydrophilic aluminum surfaces exhibited a higher critical heat flux (CHF) than the copper surfaces. The CHF was 1650 kW/m2 for Ra = 0.11 μm, and it increased to 2150 kW/m2 for Ra = 0.35 μm. Surface roughness is considered to affect CHF as it improves the capillary wicking on the superhydrophilic surface. However, further increase in surface roughness above 0.35 μm did not augment the CHF, even at Ra = 2.93 μm. This upper limit of the CHF appears to result from the hydrodynamic limit on the superhydrophilic surface, because the roughest surface with Ra = 2.93 μm still showed a faster liquid spreading speed.

Commentary by Dr. Valentin Fuster

Research Papers: Heat Exchangers

J. Heat Transfer. 2017;139(10):101801-101801-12. doi:10.1115/1.4036618.

In this paper, four types of plate-fin heat exchangers applied in 200 kW microturbines are investigated. Multi-objective optimization algorithm, NSGA-II (nondominated sorting genetic algorithm (GA)), is employed to maximize the efficiency of the recuperator and minimize its total cost, simultaneously. Feasible ranges of pressure drop, Reynolds number, and recuperator efficiency are obtained according to a penalty function. The optimizations are conducted for rectangular fin, triangular fin, louver fin, and offset strip fin recuperators with cross and counter flow arrangements. The results of each optimization problem are presented as a set of designs, called “Pareto-optimal solutions.” Afterward, for the designs, cycle efficiency and net present value (NPV) are compared based on technical and economic criteria, respectively. Maximum cycle efficiency occurring in a recuperator with louver fin and counter flow arrangement is found to be 38.17%. Finally, the optimum designs are compared based on nondominated sorting concept leading to the optimal solutions.

Commentary by Dr. Valentin Fuster

Research Papers: Heat and Mass Transfer

J. Heat Transfer. 2017;139(10):102001-102001-9. doi:10.1115/1.4036619.

The number of launches of nano- and pico-satellites has significantly increased over the past decade. Miniaturized subsystems, such as micropropulsion, for these classes of spacecraft are rapidly evolving and, in particular, micro-resistojets have shown great potential of applicability. One of the key points to address in the development of such devices is the propellants selection, since it directly influences the performance. This paper presents a methodology for the selection and characterization of fluids that are suitable for use as propellants in two micro-resistojet concepts: vaporizing liquid micro-resistojet (VLM) and the low-pressure micro-resistojet (LPM). In these concepts, the propellant is heated by a nonchemical energy source, in this case an electrical resistance. In total 95 fluids have been investigated including conventional and unconventional propellants. A feasibility assessment step is carried out following a trade-off using a combination of the analytical hierarchy process (AHP) and the Pugh matrix. A final list of nine best-scoring candidates has been analyzed in depth with respect to the thermal characteristics involved in the process, performance parameters, and safety issues. For both concepts, water has been recognized as a very promising candidate along with other substances such as ammonia and methanol.

Commentary by Dr. Valentin Fuster
J. Heat Transfer. 2017;139(10):102002-102002-9. doi:10.1115/1.4036573.

For nonlinear transient heat transfer system, a fuzzy adaptive predictive inverse method (FAPIM) is proposed to inverse transient boundary heat flux. The influence relationship matrix is utilized to establish time-varying linear prediction model of the temperatures at measurement point. Then, the predictive and measurement temperatures are used to inverse the heat flux at current moment by rolling optimization. A decentralized fuzzy inference (DFI) mechanism is established. The deviation vector of the predictive temperature is adopted to conduct decentralized inference by a set of fuzzy inference units, and then, the influence relationship matrix is updated online to guarantee the adaptive ability of the prediction model by weighting fuzzy inference components. FAPIM is utilized to inverse the unknown heat flux of a heat transfer system with temperature-dependent thermal properties, which has shown that the inverse method has better adaptive ability for the inverse problems of nonlinear heat transfer system.

Commentary by Dr. Valentin Fuster

Research Papers: Micro/Nanoscale Heat Transfer

J. Heat Transfer. 2017;139(10):102401-102401-11. doi:10.1115/1.4036643.

Design of effective microcooling systems to address the challenges of ever increasing heat flux from microdevices requires deep examination of real-time problems and has been tackled in depth. The most common (and apparently misleading) assumption while designing microcooling systems is that the heat flux generated by the device is uniform, but the reality is far from this. Detailed simulations have been performed by considering nonuniform heat load employing the configurations U, I, and Z for parallel microchannel systems with water and nanofluids as the coolants. An Intel® Core i7-4770 3.40 GHz quad core processor has been mimicked using heat load data retrieved from a real microprocessor with nonuniform core activity. This study clearly demonstrates that there is a nonuniform thermal load induced temperature maldistribution along with the already existent flow maldistribution induced temperature maldistribution. The suitable configuration(s) for maximum possible overall heat removal for a hot zone while maximizing the uniformity of cooling have been tabulated. An Eulerian–Lagrangian model of the nanofluids shows that such “smart” coolants not only reduce the hot spot core temperature but also the hot spot core region and thermal slip mechanisms of Brownian diffusion and thermophoresis are at the crux of this. The present work conclusively shows that high flow maldistribution leads to high thermal maldistribution, as the common prevalent notion is no longer valid and existing maldistribution can be effectively utilized to tackle specific hot spot location, making the present study important to the field.

Commentary by Dr. Valentin Fuster

Technical Brief

J. Heat Transfer. 2017;139(10):104501-104501-6. doi:10.1115/1.4036598.

The effects of the uniform heat flux and a linear velocity-slip on the heat transfer phenomena of spheres in Newtonian fluids are numerically investigated using semi-implicit marker and cell (SMAC) method implemented on a staggered grid arrangement in spherical coordinates. The solver is thoroughly benchmarked through domain independence, grid independence, and comparison with literature. Further extensive results are obtained in the range of conditions as: Reynolds number, Re = 0.1–200; Prandtl number, Pr = 1–100; and dimensionless slip number, λ = 0.01–100. The results are presented and discussed such that the isotherm contours and the local and average Nusselt numbers of isoflux spheres with velocity-slip at the interface are compared with their isothermal spheres counterparts under identical conditions. Briefly, the results indicate that the average Nusselt numbers of isoflux spheres are large compared to those of isothermal spheres under identical conditions. Finally, an empirical correlation is developed for the average Nusselt numbers of the spheres in Newtonian fluids with velocity-slip and the uniform heat flux conditions along the fluid–solid sphere interface.

Commentary by Dr. Valentin Fuster
J. Heat Transfer. 2017;139(10):104502-104502-4. doi:10.1115/1.4036688.

Thermomagnetic convection of a ferrofluid flow induced by the internal magnetic field around a vertical current-carrying wire was theoretically analyzed and experimentally validated for the first time. The Nusselt number for a heated 50-μm diameter wire in a ferrofluid was measured for different electrical currents and fluid temperatures. The experimental results are in a good agreement with the proposed scaling analysis. We found that increasing the current will increase the Nusselt number nonlinearly and ultimately enhances the heat transfer capability of the induced ferrofluid flow. We observed that the thermomagnetic convection becomes dominant, if large enough currents are applied.

Commentary by Dr. Valentin Fuster
J. Heat Transfer. 2017;139(10):104503-104503-5. doi:10.1115/1.4036692.

Effects of nanostructured defects of a copper solid surface on bubble growth in liquid argon have been investigated through a hybrid atomistic-continuum (HAC) method. The same solid surfaces with five different nanostructures, namely, wedge defect, deep rectangular defect (R-I), shallow rectangular defect (R-II), small rectangular defect (R-III), and no defect were modeled at the molecular level. Liquid argon was placed on top of hot solid copper with a superheat of 30 K after equilibration was achieved with computational fluid dynamics–molecular dynamic (CFD–MD) coupled simulation. Phase change of argon on five nanostructures has been observed and analyzed accordingly. The results showed that the solid surface with wedge defect tends to induce a nanobubble more easily than the others, and the larger the size of the defect, the easier it is for the bubble to generate.

Commentary by Dr. Valentin Fuster

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In