Rayleigh–Bénard convection in liquids with nanoparticles is studied in the paper considering a two-phase model for nanoliquids with thermophysical properties determined from phenomenological laws and mixture theory. In the absence of nanoparticle-modified thermophysical properties as used in the paper, the problem is essentially binary liquid convection with Soret effect. The base liquids chosen for investigation are water, ethylene glycol, engine oil, and glycerine, and the nanoparticles chosen are copper, copper oxide, silver, alumina, and titania. Using data on these 20 nanoliquids, our theoretical model clearly explains advanced onset of convection in nanoliquids in comparison with that in the base liquid without nanoparticles. The paper sets to rest the tentativeness regarding the boundary condition to be chosen in the study of Rayleigh–Bénard convection in nanoliquids. The effect of thermophoresis is to destabilize the system and so is the effect of other parameters arising due to nanoparticles. However, Brownian motion effect does not have a say on onset of convection. In the case of nonlinear theory, the five-mode Lorenz model is derived under the assumptions of Boussinesq approximation and small-scale convective motions, and using it enhancement of heat transport due to the presence of nanoparticles is clearly explained for steady-state motions. Subcritical motion is shown to be possible in all 20 nanoliquids.