0

Full Content is available to subscribers

Subscribe/Learn More  >

Tumor Geometry and SAR Distribution Generated From MicroCT Images for Tumor Temperature Elevation Simulation in Magnetic Nanoparticle Hyperthermia

[+] Author Affiliations
Alexander LeBrun, Navid Manuchehrabadi, Ronghui Ma, Liang Zhu

University of Maryland Baltimore County, Baltimore, MD

Anilchandra Attaluri

Johns Hopkins University, Baltimore, MD

Paper No. SBC2013-14505, pp. V01BT42A004; 2 pages
doi:10.1115/SBC2013-14505
From:
  • ASME 2013 Summer Bioengineering Conference
  • Volume 1B: Extremity; Fluid Mechanics; Gait; Growth, Remodeling, and Repair; Heart Valves; Injury Biomechanics; Mechanotransduction and Sub-Cellular Biophysics; MultiScale Biotransport; Muscle, Tendon and Ligament; Musculoskeletal Devices; Multiscale Mechanics; Thermal Medicine; Ocular Biomechanics; Pediatric Hemodynamics; Pericellular Phenomena; Tissue Mechanics; Biotransport Design and Devices; Spine; Stent Device Hemodynamics; Vascular Solid Mechanics; Student Paper and Design Competitions
  • Sunriver, Oregon, USA, June 26–29, 2013
  • Conference Sponsors: Bioengineering Division
  • ISBN: 978-0-7918-5561-4
  • Copyright © 2013 by ASME

abstract

Previous investigations in magnetic nanoparticle hyperthermia for cancer treatments have demonstrated that particle size, particle coating, and magnetic field strength and frequency determine its heating generation capacity. However, once the nanoparticles are manufactured, the spatial distribution of the nanostructures dispersed in tissue dominates the spatial temperature elevation during heating.1–3 Therefore, understanding the distribution of magnetic nanoparticles in tumors is critical to develop theoretical models to predict temperature distribution in tumors during hyperthermia treatment. An accurate description of the nanoparticle distribution and the tumor geometry will greatly enhance the simulation accuracy of the heat transfer process in tumors, which is crucial for generating an optimal temperature distribution that can prevent the occurrence of heating under-dosage in the tumor and overheating in the healthy tissue. Recently studies by our group have demonstrated that the nanoparticle concentration distribution in tumors can be visualized via microCT image due to the density elevation of the presence of magnetic nanoparticles.4 The problem is the intensive memory requirements to directly import the microCT images to numerical simulation software packages such as COMSOL. Although commercial software packages exist to handle detailed entities inside tumors, they are very expensive to purchase. In addition, having very small entities at the micrometer level inside the tumor geometry may provide challenge to numerical simulation software to accept the generated geometry.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In