In this paper, thermoelectric properties of bulk PbTe are calculated using first principles calculations and molecular dynamics simulations. The Full Potential Linearized Augmented Plane Wave (FP-LAPW) method is first employed to calculate the PbTe band structure. The transport coefficients (Seebeck coefficient, electrical conductivity, and electron thermal conductivity) are then computed using Boltzmann transport equation (BTE) under the constant relaxation time approximation. Interatomic pair potentials in the Buckingham form are also derived using ab initio effective charges and total energy data. The effective interatomic pair potentials give excellent results on equilibrium lattice parameters and elastic constants for PbTe. The lattice thermal conductivity of PbTe is then calculated using molecular dynamics simulations with the Green-Kubo method. In the end, the figure of merit of PbTe is computed revealing the thermoelectric capability of this material, and the multiscale simulation approach is shown to have the potential to identify novel thermoelectric materials.
Skip Nav Destination
ASME 2008 3rd Energy Nanotechnology International Conference collocated with the Heat Transfer, Fluids Engineering, and Energy Sustainability Conferences
August 10–14, 2008
Jacksonville, Florida, USA
Conference Sponsors:
- Nanotechnology Institute
ISBN:
978-0-7918-4323-9
PROCEEDINGS PAPER
Multiscale Simulations of Thermoelectric Properties of PBTE
Xiulin Ruan
Xiulin Ruan
Purdue University, West Lafayette, IN
Search for other works by this author on:
Bo Qiu
Purdue University, West Lafayette, IN
Hua Bao
Purdue University, West Lafayette, IN
Xiulin Ruan
Purdue University, West Lafayette, IN
Paper No:
ENIC2008-53040, pp. 45-60; 16 pages
Published Online:
June 5, 2009
Citation
Qiu, B, Bao, H, & Ruan, X. "Multiscale Simulations of Thermoelectric Properties of PBTE." Proceedings of the ASME 2008 3rd Energy Nanotechnology International Conference collocated with the Heat Transfer, Fluids Engineering, and Energy Sustainability Conferences. ASME 2008 3rd Energy Nanotechnology International Conference. Jacksonville, Florida, USA. August 10–14, 2008. pp. 45-60. ASME. https://doi.org/10.1115/ENIC2008-53040
Download citation file:
36
Views
Related Proceedings Papers
Related Articles
An Investigation on Thermal Conductivity of Fluid in a Nanochannel by Nonequilibrium Molecular Dynamics Simulations
J. Heat Transfer (March,2020)
The Effect of the Liquid Layer Around the Spherical and Cylindrical Nanoparticles in Enhancing Thermal Conductivity of Nanofluids
J. Heat Transfer (March,2019)
Thermal Conductivity of Individual Single-Wall Carbon Nanotubes
J. Heat Transfer (June,2007)
Related Chapters
Molecular Dynamics Simulations of the Thermal Conductivity of Bismuth Telluride Using Two-Body Interatomic Potentials
Inaugural US-EU-China Thermophysics Conference-Renewable Energy 2009 (UECTC 2009 Proceedings)
On Interfacial Ribbons of ζ- and γ-Hydride Phases Surrounding δ Precipitates in Zircaloy-2
Zirconium in the Nuclear Industry: 20th International Symposium
PVDF/CO 3 O 4 Nanocomposites: Porosity, Crystallinity and Conductivity
International Conference on Advanced Computer Theory and Engineering, 4th (ICACTE 2011)