Abstract

It is common that steam turbine works at different operating points, especially under low load conditions, to cater to complex and varied demands for power generation recently. Considering the long and thin shape of last stage moving blades (LSMBs) in a low-pressure (LP) steam turbine, there are many challenges to design a suitable case which balances global efficiency against sufficient structure strength when suffering excitations at low load operating points. In present work, the aim is to extract specific aerodynamic excitations and recognize their distribution and propagation features. Firstly, steady 3D computational fluid dynamics (CFD) calculations are simulated at 25GV and 17GV (25% and 17% of design mass flow conditions) and corresponding unsteady calculations are performed with enough rotor revolutions to obtain integrated flow periodicities. Unsteady pressure signals near tip region of LSMBs are monitored circumferentially in both static and rotating coordinates. The fast Fourier transformation (FFT) results of unsteady pressure signals show that there are broadband humps with small disturbance amplitudes in low frequency spectrum at 25GV, however, a sharp spike is shown in low frequency spectrum at 17GV. Further, circumferential mode decomposition (CMD) method has been applied to distinguish different fluctuations in frequency and the mode numbers and circumferential propagating pace of which have been obtained. Finally, dynamic mode decomposition (DMD) method has been performed to describe detailed mode shapes of featured flow perturbances both in static and rotating coordinate system. These analyses indicate that at 25GV, a band of unsteady responses with very low amplitude was noted which has some features similar to rotating instability (RI). However, distribution and propagation features of flow unsteadiness at 17GV are in good agreement with rotating stall (RS) in compressor.

This content is only available via PDF.
You do not currently have access to this content.