The aero-thermal performance of a typical turbine blade three-pass turbulated cooling circuit geometry was investigated in a 10X plexiglas test model. The model closely duplicated the blade’s leading edge, midchord and trailing edge cooling passage geometries. Steady state heat transfer coefficient distributions along the blade pressure side wall (convex surface) of the cooling circuit passages were measured with a thin-foil heater and a liquid crystal temperature sensor assembly. The heat transfer experiments were conducted on rib-roughened channels with staggered turbulators along the convex and concave surfaces of the cooling passages. Mid-channel axial velocity and turbulence intensity measurements were taken by hot wire anemometry at each passage end of the three-pass cooling circuit to characterize and relate the local thermal performance to the turbulence intensity levels. The near-atmospheric experimental data are compared with results of a Computational Fluid Dynamics (CFD) analysis at the operating internal environment for a IX rotating model of the blade cooling circuit and other turbulator channel geometry heat transfer data investigations. The comparison between the measurements and analysis is encouraging. Differences with other heat transfer data appear reasonably understood and explainable.
Skip Nav Destination
ASME 1992 International Gas Turbine and Aeroengine Congress and Exposition
June 1–4, 1992
Cologne, Germany
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
978-0-7918-7896-5
PROCEEDINGS PAPER
Heat Transfer and Turbulence in a Turbulated Blade Cooling Circuit
N. Abuaf,
N. Abuaf
General Electric Company, Schenectady, NY
Search for other works by this author on:
D. M. Kercher
D. M. Kercher
GE Aircraft Engines, Lynn, MA
Search for other works by this author on:
N. Abuaf
General Electric Company, Schenectady, NY
D. M. Kercher
GE Aircraft Engines, Lynn, MA
Paper No:
92-GT-187, V004T09A004; 10 pages
Published Online:
March 3, 2015
Citation
Abuaf, N, & Kercher, DM. "Heat Transfer and Turbulence in a Turbulated Blade Cooling Circuit." Proceedings of the ASME 1992 International Gas Turbine and Aeroengine Congress and Exposition. Volume 4: Heat Transfer; Electric Power; Industrial and Cogeneration. Cologne, Germany. June 1–4, 1992. V004T09A004. ASME. https://doi.org/10.1115/92-GT-187
Download citation file:
325
Views
0
Citations
Related Proceedings Papers
Related Articles
Heat Transfer and Turbulence in a Turbulated Blade Cooling Circuit
J. Turbomach (January,1994)
Effect of Squealer Geometry on Tip Flow and Heat Transfer for a
Turbine Blade in a Low Speed Cascade
J. Heat Transfer (August,2004)
Investigation of the Effects of Flow Swirl on Heat Transfer Inside a Cylindrical Cavity
J. Heat Transfer (May,1991)
Related Chapters
Telecom: A Field with Myths and Mistakes All Its Own
More Hot Air
Control and Operational Performance
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Concluding remarks
Mechanical Blood Trauma in Circulatory-Assist Devices