Mass and heat transfer are experimentally investigated in a discoidal and unshrouded rotor-stator cavity where an air jet passes through the stator and impinges on the rotor center. Using a jet impingement is a way to bring fresh air inside the air gap and to increase shear stresses and so heat transfer over the rotor. This study focuses on comparisons between heat transfer coefficients and velocity fields obtained inside the air gap for the case of a dimensionless spacing interval G = 0.02 and a low aspect ratio for the jet e/D = 0.25. Two jet Reynolds numbers ranging from 16000 to 42000 and three rotational Reynolds numbers between 30000 and 516000 are considered. Mass transfers are investigated by Particle Image Velocimetry technique while the radial distribution of heat transfer coefficients over the rotor is obtained using a thick wall method and temperature measurements by infrared thermography.
- Heat Transfer Division
Mass and Heat Transfer Inside the Air Gap of a Discoidal and Unshrouded Rotor Stator System With a Jet Impingement
Pellé, J, Nguyen, TD, & Harmand, S. "Mass and Heat Transfer Inside the Air Gap of a Discoidal and Unshrouded Rotor Stator System With a Jet Impingement." Proceedings of the ASME 2012 Heat Transfer Summer Conference collocated with the ASME 2012 Fluids Engineering Division Summer Meeting and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels. Volume 1: Heat Transfer in Energy Systems; Theory and Fundamental Research; Aerospace Heat Transfer; Gas Turbine Heat Transfer; Transport Phenomena in Materials Processing and Manufacturing; Heat and Mass Transfer in Biotechnology; Environmental Heat Transfer; Visualization of Heat Transfer; Education and Future Directions in Heat Transfer. Rio Grande, Puerto Rico, USA. July 8–12, 2012. pp. 79-88. ASME. https://doi.org/10.1115/HT2012-58130
Download citation file: