Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Date
Availability
1-20 of 538
Pressure
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Joel Mortimer, Stephen Yoannidis, Farzad Poursadegh, Zhewen Lu, Michael Brear, Yi Yang, David Etherington, Marcel Heijkoop, Joshua Lacey
Proc. ASME. ICEF2020, ASME 2020 Internal Combustion Engine Division Fall Technical Conference, V001T01A002, November 4–6, 2020
Paper No: ICEF2020-2920
Abstract
This paper presents an experimental and numerical study of a directly injected, spark-ignited (DI SI), heavy duty hydrogen fueled engine at knock-limited conditions. The impact of air-fuel ratio and ignition timing on engine performance is first investigated experimentally. Two-zone combustion modeling of the hydrogen fueled cylinder is then used to infer burn profiles and unburned, end-gas conditions using the measured in-cylinder pressure traces. Simulation of the autoignition chemistry in this end-gas is then undertaken to identify key parameters that are likely to impact knock-limited behavior. The experiments demonstrate knock-limited performance on this high compression ratio engine over a wide range of air-fuel ratios, λ. Other trends with λ are qualitatively similar to those shown in previous studies of hydrogen fueled engines. Kinetic simulations then suggest that some plausible combination of residual nitric oxide from previous cycles and locally high charge temperatures at intake valve closing can lead to autoignition at the knock-limited conditions identified in the experiments. This prompts a parametric study that shows how increased λ makes hydrogen less likely to autoignite, and suggests options for the design of high efficiency, directly injected, hydrogen fueled engines.
Proceedings Papers
Valentin Soloiu, Cesar E. Carapia, Richard Smith, III, Amanda Weaver, Levi Mckinney, David Mothershed, Drake Grall, Marcel Ilie, Mosfequr Rahman
Proc. ASME. ICEF2020, ASME 2020 Internal Combustion Engine Division Fall Technical Conference, V001T02A008, November 4–6, 2020
Paper No: ICEF2020-3010
Abstract
A fuel blend consisting of 10% S8 by mass (a Fischer-Tropsch synthetic kerosene), and 90% ULSD (Ultra Low Sulfur Diesel) was investigated for their combustion characteristics and impact on emissions during RCCI (Reactivity Controlled Compression Ignition) combustion in a single cylinder experimental engine utilizing a 65% by mass n-butanol port fuel injection (PFI). RCCI is a dual fuel combustion strategy achieved with the introduction of a PFI fuel of the low-reactive n-butanol, and a direct injection (DI) of a high-reactivity blend (FT-BLEND) into an experimental diesel engine. The combustion analysis and emissions testing were conducted at 1500 RPM at an engine load of 5 bar IMEP (Indicated Mean Effective Pressure), and CA50 of 9° ATDC (After Top Dead Center); CDC (Conventional Diesel Combustion) and RCCI with 65Bu-35ULSD were utilized as the baseline for AHRR (Apparent Heat Release Rate), ringing and emissions comparisons. It was found during a preliminary investigation with a Constant Volume Combustion Chamber (CVCC) that the introduction of 10% by mass S8 into a mixture with 90% ULSD by mass only increased Derived Cetane Number (DCN) by 0.8, yet it was found to have a significant effect on the combustion characteristics of the fuel blend. This led to the change in injection timing necessary for maintaining 65Bu-35F-T BLEND RCCI at a CA50 of 5° ATDC (After Top Dead Center) to be shifted 3° closer to TDC, thus affecting the Ringing Intensity (RI), Pressure Rise Rate, and heat release of the blend all to decrease. CDC was conducted with a primary injection of 14° BTDC at a rail pressure of 800 bar, all RCCI testing was conducted with 65% PFI of n-butanol by mass and 35% DI, to prevent knock, with a rail pressure of 600 bar and a pilot injection of 60° BTDC for 0.35 ms. 65Bu-35ULSD RCCI was conducted with a primary injection at 6° BTDC with neat ULSD#2, the fuel 65Bu-35F-T BLEND in RCCI had a primary injection at 3° BTDC to maintain CA50 at 9° ATDC. 65Bu-35ULSD RCCI experienced a NO x and soot emissions decrease of 40.8% and 91.44% respectively in comparison to CDC. The fuel 65Bu-35F-T BLEND in RCCI exhibited an additional decrease of NO x and soot of 32.9 and 5.3%, in comparison to 65Bu-35ULSD RCCI for an overall decrease in emissions of 73.7% and 96.71% respectively. Ringing Intensity followed a similar trend with reductions in RI for 65Bu-35ULSD RCCI decreasing only by 6.2% whereas 65Bu-35F-T BLEND had a decrease in RI of 76.6%. Although emissions for both RCCI fuels experienced a decrease in NO x and soot in comparison to CDC, UHC and CO did increase as a result of RCCI. CO emissions for 65Bu-35ULSD RCCI and 65Bu-35F-T BLEND where increased from CDC by a factor of 5 and 4 respectively with UHC emissions rising from CDC by a factor of 3.4. The fuel 65Bu-35F-T BLEND had a higher combustion efficiency than 65Bu-35ULSD in RCCI at 91.2% due to lower CO emissions of the blend.
Proceedings Papers
Proc. ASME. ICEF2020, ASME 2020 Internal Combustion Engine Division Fall Technical Conference, V001T02A009, November 4–6, 2020
Paper No: ICEF2020-3017
Abstract
Cetane number is one of the most important fuel performance metrics for mixing controlled compression-ignition “diesel” engines, quantifying a fuel’s propensity for autoignition when injected into end-of-compression-type temperature and pressure conditions. The historical default and referee method on a Cooperative Fuel Research (CFR) engine configured with indirect fuel injection and variable compression ratio is cetane number (CN) rating. A subject fuel is evaluated against primary reference fuel blends, with heptamethylnonane defining a low-reactivity endpoint of CN = 15 and hexadecane defining a high-reactivity endpoint of CN = 100. While the CN scale covers the range from zero (0) to 100, typical testing is in the range of 30 to 65 CN. Alternatively, several constant-volume combustion chamber (CVCC)-based cetane rating devices have been developed to rate fuels with an equivalent derived cetane number (DCN) or indicated cetane number (ICN). These devices measure ignition delay for fuel injected into a fixed volume of high-temperature and high-pressure air to simulate end-of-compression-type conditions. In this study, a range of novel fuel compounds are evaluated across three CVCC methods: the Ignition Quality Tester (IQT), Fuel Ignition Tester (FIT), and Advanced Fuel Ignition Delay Analyzer (AFIDA). Resulting DCNs and ICNs are compared for fuels within the normal diesel fuel range of reactivity, as well as very high (∼100) and very low DCNs/ICNs (∼5). Distinct differences between results from various devices are discussed. This is important to consider because some new, high-efficiency advanced compression-ignition (CI) engine combustion strategies operate with more kinetically controlled distributed combustion as opposed to mixing controlled diffusion flames. These advanced combustion strategies may benefit from new fuel chemistries, but current rating methods of CN, DCN, and ICN may not fully describe their performance. In addition, recent evidence suggests ignition delay in modern on-road diesel engines with high-pressure common rail fuel injection systems may no longer directly correlate to traditional CN fuel ratings. Simulated end-of-compression conditions are compared for CN, DCN, and ICN and discussed in the context of modern diesel engines to provide additional insight. Results highlight the potential need for revised and/or multiple fuel test conditions to measure fuel performance for advanced CI strategies.
Proceedings Papers
Proc. ASME. ICEF2020, ASME 2020 Internal Combustion Engine Division Fall Technical Conference, V001T03A007, November 4–6, 2020
Paper No: ICEF2020-2961
Abstract
Lean combustion has proven to be an effective way to improve the efficiency and emissions of the direct injection spark ignition (DISI) engine. However, one of the main problems at the lean stability limit is the major decrease in flame temperature due to dilution, resulting in a low laminar flame speed, especially under low-speed engine operating conditions. The split injection is a potential technology to realize proper air-fuel mixing and achieve different spray distribution that can help in solving such problems. In this study, split injections with different secondary injection timings were tested to achieve homogeneous and homogeneous-stratified modes in a DISI optical engine under lean-burn mode. The split ratio of each strategy was 1:1. The engine was operated at 800 rpm, and a high-energy ignition system was utilized to realize lean combustion at a lambda of 1.55. Engine combustion performance and emissions were tested while performing high-speed color recording to study the characteristics of flame chemiluminescence through a quartz piston combined with a 45-degree mirror installed below. Flame structure during various combustion phases was compared under different selected conditions based on a digital image processing technique. The results show that the pressure and emissions vary with the second injection timing. Proper control of the split injection timing can improve lean combustion performance, including faster flame speed, increased indicated mean effective pressure (IMEP), and lower harmful emissions. Poor fuel evaporation and soot generation from spatial hot spots in the combustion process of split injection are the major challenges for further improvement.
Proceedings Papers
Proc. ASME. ICEF2020, ASME 2020 Internal Combustion Engine Division Fall Technical Conference, V001T03A010, November 4–6, 2020
Paper No: ICEF2020-2969
Abstract
In the medium and long term, cogeneration plants in Germany will play an important role in the transition towards a cleaner and more efficient electricity and heat generation, compared to the conventional uncoupled power plants. For most of the currently used CHP (Combined Heat and Power) units, which operate with a lean-burn process, the NO x emissions limit represents an obstacle to increasing the electrical efficiency. Therefore, the lean burn process has become less attractive because of stricter future NO x emissions limit. In this context, the stoichiometric combustion process with a three-way catalytic converter provides a solution. However, the present study shows that lean burn operation still has potential due to direct water injection into the combustion chamber. This work includes an experimental investigation of the impact of different injection parameters (beginning of injection timing, injection pressure difference and water-to-fuel ratio) on the effectiveness of direct water injection regarding the improvement of the trade-off between engine efficiency and NO x emissions. For the execution of the experimental investigations, a series-production CHP-engine was equipped with a direct injection system consisting of a high-pressure unit, a high-pressure pipe and a GDI-injector. For the injector integration, the cylinder head was machined sidewise (close to the exhaust gas valve). Furthermore, 3D CFD simulations of the injection process allowed gaining a deeper insight into the complex spray-flow interaction, wall film formation and evaporation at different injection timings. For the 3D CFD simulations, the spray model used was tuned with help of spray pictures, taken on the spray test bed. Water injection at the beginning of the intake stroke (330 °CA BFTDC) reduces NO x emissions most effectively. Moreover, it causes the least engine efficiency loss. The increase of the injection pressure difference (between 20 and 80 bar) leads to a significant increase of the engine efficiency. However, it has a secondary effect on the NO x emissions reduction. The lowest NO x emissions are reached with an injection pressure difference of 60 bar. The combination of direct water injection (at the beginning of the intake stroke, injection pressure difference of 60 bar) with earlier combustion phasings enables an increase in the engine efficiency and a simultaneous decrease in NO x emissions without loss in engine performance. Main drawbacks of water injection are longer combustion duration and higher CO and HC emissions. In addition, the lower exhaust gas temperature causes a deterioration of the conversion of the HC molecules in the oxidation catalyst and reduces the heat recovery efficiency of the CHP-system.
Proceedings Papers
Krishna C. Kalvakala, Pinaki Pal, Yunchao Wu, Goutham Kukkadapu, Christopher Kolodziej, Jorge Pulpeiro Gonzalez, Muhammad Umer Waqas, Tianfeng Lu, Suresh K. Aggarwal, Sibendu Som
Proc. ASME. ICEF2020, ASME 2020 Internal Combustion Engine Division Fall Technical Conference, V001T02A004, November 4–6, 2020
Paper No: ICEF2020-2939
Abstract
Growing environmental concerns and demand for better fuel economy are driving forces that motivate the research for more advanced engines. Multi-mode combustion strategies have gained attention for their potential to provide high thermal efficiency and low emissions for light-duty applications. These strategies target optimizing the engine performance by correlating different combustion modes to load operating conditions. The extension from boosted SI mode at high loads to advanced compression ignition (ACI) mode at low loads can be achieved by increasing compression ratio and utilizing intake air heating. Further, in order to enable an accurate control of intake charge condition for ACI mode and rapid mode-switches, it is essential to gain fundamental insights into the autoignition process. Within the scope of ACI, homogeneous charge compression ignition (HCCI) mode is of significant interest. It is known for its potential benefits, operation at low fuel consumption, low NO x and PM emissions. In the present work, a virtual Cooperative Fuel Research (CFR) engine model is used to analyze fuel effects on ACI combustion. In particular, the effect of fuel Octane Sensitivity (S) (at constant RON) on autoignition propensity is assessed under beyond-RON (BRON) and beyond-MON (BMON) ACI conditions. The 3D CFR engine computational fluid dynamics (CFD) model employs finite-rate chemistry approach with multi-zone binning strategy to capture autoignition. Two binary blends with Research Octane Number (RON) of 90 are chosen for this study: Primary reference fuel (PRF) with S = 0, and toluene-heptane (TH) blend with S = 10.8, representing paraffinic and aromatic gasoline surrogates. Reduced mechanisms for these blends are generated from a detailed gasoline surrogate kinetic mechanism. Simulation results with the reduced mechanisms are validated against experimental data from an in-house CFR engine, with respect to in-cylinder pressure, heat release rate and combustion phasing. Thereafter, the sensitivity of combustion behavior to ACI operating condition (BRON vs BMON), air-fuel ratio (λ = 2 and 3), and engine speed (600 and 900rpm) is analyzed for both fuels. It is shown that the sensitivity of a fuel’s autoignition characteristics to λ and engine speed significantly differs at BRON and BMON conditions. Moreover, this sensitivity is found to vary among fuels, despite the same RON. This study also indicates that the octane index (OI) fails to capture the trend in the variation of autoignition propensity with S under BMON conditions.
Proceedings Papers
Proc. ASME. ICEF2020, ASME 2020 Internal Combustion Engine Division Fall Technical Conference, V001T03A008, November 4–6, 2020
Paper No: ICEF2020-2964
Abstract
Converting existing compression ignition (CI) engines to spark ignition (SI) operation can increase the use of natural gas (NG) in heavy-duty engine applications and reduce the reliance on petroleum fuels. Gas fumigation upstream of the intake manifold and the addition of a spark plug in place of the diesel injector to initiate and control the combustion process is a convenient approach for converting existing diesel engines to dedicated NG operation. Stoichiometric operation and a three-way catalytic converter can help the engine to comply with increasingly strict emission regulations. However, as the CI-to-SI conversion usually maintains the conventional geometry of a CI engine (i.e., maintains the flat cylinder head and the bowl-in piston), the goal of this study was to observe some of the effects that the diesel conversion to stoichiometric NG SI operation will have on the engine’s performance and emissions. Dynamometer tests were performed at a constant engine speed at 1300 rpm but various spark timings. The experimental results for a net indicated mean effective pressure ∼ 6.7 bar showed that ignition timing did not affect the end of combustion due to the slow-burn inside the squish. Moreover, the less-optimal conditions inside the squish led to increased carbon monoxide (CO) and unburned hydrocarbon (UHC) emissions. While the combustion event was stable with no signs of knocking at the medium load conditions investigated here, the results suggest that the engine control needs to optimize the mass fraction trapped inside the squish region for a higher efficiency and lower emissions.
Proceedings Papers
Alexander Balu, Miguel Castro, Geet Padhi, Todd Bandhauer, Bret Windom, Shane Garland, Daniel Olsen, Robert Braun
Proc. ASME. ICEF2020, ASME 2020 Internal Combustion Engine Division Fall Technical Conference, V001T02A005, November 4–6, 2020
Paper No: ICEF2020-2971
Abstract
Recent innovations in Metal Supported Solid Oxide Fuel Cells (MS-SOFC) have increased the longevity and reliability of fuel cells. These innovations drive the desire to create power generating systems that combine different ways of extracting power from a fuel to increase overall thermal efficiency. This investigation assesses the feasibility of operating an internal combustion engine with the anode tail-gas, which is a blend of H 2 , CO, CO 2 , H 2 O, and CH 4 , exhausted by a MS-SOFC. This engine would be used to support fuel cell balance of plant equipment and produce excess electrical power. Four variations of the expected anode tail-gas blends were determined by varying the dewpoint temperature of the fuel. Gas blends are tested by combining separate flows of each constituent, and combustion is tested using a Cooperative Fuel Research (CFR) engine. Compression ratio, spark timing, inlet manifold temperature, and boost pressure were used to obtain optimal operating conditions. Stable engine operation was obtained on all test blends. A combination of computational fluid dynamics (CFD) and analysis of chemical species and reaction mechanisms is used to develop an engine and combustion model. This model allows for further investigation into anode tail-gas combustion characteristics. Response Surface Method Optimization was used to experimentally optimize operating parameters and determine the maximum achievable efficiency utilizing the CFR engine. All test blends with H 2 O produced power in the engine although the blend with the most water content caused operational problems with the CFR engine test stand, including large amounts of water entering the oil system. Three chemical kinetic mechanisms were investigated that had the correct species for simulating the fuel with a low number of reactions to facilitate low computational time: San Diego (SD), GRI and Gallway 2017 (NUIG) mechanism. Out of these four mechanisms, the NUIG mechanism results fit the CFR engine experimental data best. Response Surface Method Optimization was performed on the most viable test blends, the steam injections blends at 40°C and 90°C fuel dewpoint temperature. During optimization the 40°C dewpoint temperature blend brake efficiency increased from 20% to 21.6%, and the 90°C dewpoint temperature blend brake efficiency increased from 17% to 22.3%.
Proceedings Papers
Proc. ASME. ICEF2020, ASME 2020 Internal Combustion Engine Division Fall Technical Conference, V001T03A009, November 4–6, 2020
Paper No: ICEF2020-2968
Abstract
Converting existing compression ignition engines to spark ignition approach is a promising approach to increase the application of natural gas in the heavy-duty transportation sector. However, the diesel-like environment dramatically affects the engine performance and emissions. As a result, experimental tests are needed to investigate the characteristics of such converted engines. A machine learning model based on bagged decision trees algorithm was established in this study to reduce the experimental cost and identify the operating conditions of special interest for analysis. Preliminary engine tests that changed spark timing, mixture equivalence ratio, and engine speed (three key engine operation variables) but maintained intake and boundary conditions were applied as model input to train such a correlative model. The model output was the indicated mean effective pressure, which is an engine parameter generally used to assist in locating high engine efficiency regions at constant engine speed and fuel/air ratio. After training, the correlative model can provide acceptable prediction performance except few outliers. Subsequently, boosting ensemble learning approach was applied in this study to help improve the model performance. Furthermore, the results showed that the boosted decision trees algorithm better described the combustion process inside the cylinder, as least for the operating conditions investigated in this study.
Proceedings Papers
Proc. ASME. ICEF2020, ASME 2020 Internal Combustion Engine Division Fall Technical Conference, V001T01A007, November 4–6, 2020
Paper No: ICEF2020-3031
Abstract
Crank-angle resolved cylinder pressure data is valuable for characterizing engine performance and various techniques have been developed for post-processing the pressure traces to understand the rate of heat release and its overall impact on engine performance. However, many of these techniques rely on accurate knowledge of the compression ratio, which may not be well-known because of uncertainties in component dimensions for new and rebuilt engines. Additionally, uncertainties in cylinder pressure referencing and top dead center (TDC) offset can lead to variation in the calculation of these parameters. A method was developed to estimate the compression ratio and heat transfer sensitivity for large bore diesel engines using GT-Power and experimental cylinder pressure traces. An injector cutout method was used on a 228.6mm bore 16-cylinder engine to record motoring cylinder pressure traces for an individual cylinder. The cylinder pressure traces were pegged thermodynamically by matching the slope of a 40-deg window of the compression trace with that of a GT-power simulation of a similar condition. Once the cylinder pressure was properly referenced, it was found that the compression ratio of the cylinder could be estimated by matching the slope of the compression trace over a larger crank angle window. Additionally, it is shown that the location of peak cylinder pressure is dependent on heat transfer and if the location of peak cylinder pressure relative to top dead center is accurately known, then the heat transfer coefficients in GT-Power can be estimated. For an engine where the exact compression ratio may not be known due to variations in hardware dimensions (for both new and rebuilt engines), this method provides a simple path to estimating compression ratio. Furthermore, by measuring the exact location of TDC and comparing that to the location of peak cylinder pressure, heat transfer can be estimated.
Proceedings Papers
Proc. ASME. ICEF2020, ASME 2020 Internal Combustion Engine Division Fall Technical Conference, V001T04A001, November 4–6, 2020
Paper No: ICEF2020-2904
Abstract
Knowledge of the NO:NO 2 ratio emitted from a diesel engine is particularly important for ensuring the highest performance of SCR NO x aftertreatment systems. As real driving emissions from vehicles increase in importance, the need to understand the NO:NO 2 ratio emitted from a diesel engine during transient operation similarly increases. Previous work by the authors identified significant differences in NO:NO 2 ratio throughout the exhaust period of a single engine cycle, with proportionally more NO 2 being emitted during the blowdown period compared to the rest of the exhaust stroke. At the time it was not known what caused this effect. In this study, crank-angle resolved NO and NO 2 measurements using fast response CLD (for NO) and a new fast LIF instrument (for NO 2 ) have been taken from a single cylinder high-speed light duty diesel engine at three different speed and load points including a point with and without EGR. In addition, crank-angle resolved unburned hydrocarbon (UHC) measurements have been taken simultaneously using a fast FID. The NO x emitted per cycle and the peak cylinder pressure of that cycle have showed high correlation coefficients (R 2 < 0.97 at all test points) in this work. In addition, a variation of the NO:NO 2 ratio through the engine’s exhaust stroke is also observed indicative of in-cylinder stratification of NO and NO 2 . A new link between the NO:NO 2 ratio and the UHC emissions from an individual engine cycle is observed — the results show that where there are higher levels of UHC emissions in the first part of the exhaust stroke (blowdown), perhaps caused by injector dribble or release from crevices, the proportion of NO 2 emitted from that cycle is increased. This effect is observed and analysed across all test points and with and without EGR. The performance of the new fast LIF analyser has also been evaluated, in comparison with the previous state-of-the-art and standard “slow” emissions measurement apparatus showing a reduction in the noise of the measurement by an order of magnitude.
Proceedings Papers
Proc. ASME. ICEF2020, ASME 2020 Internal Combustion Engine Division Fall Technical Conference, V001T05A005, November 4–6, 2020
Paper No: ICEF2020-2972
Abstract
The mixing of fuel and air in the combustion chamber of an IC engine is crucial to emissions formation. Therefore, developing effective diagnostic techniques for measuring mixing is critical for progressing IC engines. Existing methodologies for the optical measurement of air-fuel mixing, including Rayleigh scattering and Laser Induced Fluorescence (LIF), have demonstrated various diagnostic-implementation challenges, high uncertainties under engine-relevant environments, and strong interferences from the liquid spray which prevents their use in near-spray measurements. This work presents the use of an alternative approach based on a laser-absorption/scattering technique called Ultraviolet-Visible Diffuse Back-Illumination (UV-Vis DBI) to quantify local equivalence ratio in a vaporizing diesel spray. Ultraviolet and visible light are generated using a ND:YAG pumped frequency-doubled tunable dye laser operating at 9.9 kHz. The simultaneous UV-Visible illumination is used to back-illuminate a vaporizing diesel spray, and the resulting extinction of each signal is recorded by a pair of high-speed cameras. Using an aromatic tracer (naphthalene, BP = 218 °C) in a base fuel of dodecane (BP = 215–217 °C), the UV illumination (280 nm) is absorbed along the illumination path through the spray, yielding a projected image of line-of-sight optical depth that is proportional to the path-average fuel vapor concentration in the vapor region of the spray. The visible illumination is chosen at a non-absorbing wavelength (560 nm), such that the light extinction is only due to liquid scattering, yielding a projected image of the liquid spray. A key advantage of the method is that the absorption coefficient of the selected tracer is relatively independent of temperature and pressure for 280-nm illumination, reducing measurement uncertainties at engine-relevant conditions. Measurements are also achievable in near-spray vapor regions since there is no mie-scattering interference from the liquid spray. The diagnostic is applied to measure the fuel-air mixing field of a diesel spray produced by a Bosch CRI3-20 ks1.5 single-orifice injector (90 μm diameter) similar to ECN Spray A. Measurements are conducted in a non-reacting high-pressure and temperature nitrogen environment using a constant-flow, optically-accessible spray chamber operating at 60 bar and 900 K. The results are evaluated against existing ECN mixing measurements based on Rayleigh scattering. The diagnostic yields centerline and radial mixture fraction measurements that match the ECN Rayleigh measurements within uncertainty bounds.
Proceedings Papers
Lorenzo Nocivelli, Anqi Zhang, Brandon A. Sforzo, Aniket Tekawade, Alexander K. Voice, Meng Tang, Christopher F. Powell, Sibendu Som, Yuanjiang Pei, Robert S. Levy
Proc. ASME. ICEF2020, ASME 2020 Internal Combustion Engine Division Fall Technical Conference, V001T05A007, November 4–6, 2020
Paper No: ICEF2020-2991
Abstract
The differences between a center-mounted and a side-mounted injector for gasoline direct injection (GDI) applications are analyzed through computational fluid dynamics (CFD). The Engine Combustion Network’s (ECN) axisymmetric 8-hole Spray G injector is compared to a 6-hole injector designed to be side-mounted in an engine. Nozzle-flow simulations are carried out with the commercial CFD software CONVERGE, injecting Euro 5 certification gasoline into a constant volume chamber. Low-load operating conditions are targeted, setting the injection pressure at 50 bar and the ambient pressure to be representative of very early pilot injections. The phase change is handled with the Homogeneous Relaxation Model (HRM), which is assessed and adapted to gasoline flash-boiling conditions. The simulation domains are generated leveraging real injector internal geometries obtained by micron-resolution X-ray tomographic measurements, which introduce manufacturing tolerances and surface roughness in the computational study. Steady needle lift conditions are analyzed. The near-field fuel density distributions and plume morphologies are evaluated, validated and compared to X-ray radiography measurements. A computational best practice is defined and single plume characteristics and variability trends are highlighted as functions of the geometry of the orifices. The plume-plume interaction dynamics are identified and assessed, underlining differences from center- to side-mounted injectors at strong flashing conditions. The obtained numerical framework allows the identification of near-nozzle injection characteristics such as single plume direction, cone angle, spray initial velocity and spatial fuel density distribution. The presented results represent a unique dataset for the initialization of more-affordable Lagrangian spray models, which differentiate the behavior of side-mounted and center-mounted injectors.
Proceedings Papers
Proc. ASME. ICEF2020, ASME 2020 Internal Combustion Engine Division Fall Technical Conference, V001T05A009, November 4–6, 2020
Paper No: ICEF2020-3007
Abstract
In support of efforts to develop improved models of turbulent spray behavior and combustion in diesel engines, experimental data and analysis must be obtained to guide and validate them. For RANS-based CFD modeling approaches it is important to have representative ensemble average experimental results. For models that provide high fidelity local details such as LES-based CFD simulations, it is desirable to have precise individual experiment results. Making comparisons however is a challenge as it is impossible to directly compare local parameters between a given experiment and LES simulation. An optically accessible constant pressure flow rig (CPFR) is utilized to capture injection and reaction behavior with three optical diagnostic techniques: rainbow schlieren deflectometry (RSD), OH* chemiluminescence (OH*), and two-color pyrometry (2CP). The benefit of these high-speed, simultaneous diagnostics is that local measurements can be made for every stage of a single injection event, observing both how much injections differ one from another, and also how such differences evolve temporally. The CPFR allows a sufficiently large number of repeated injection experiments to be performed for proper statistical analysis and ensemble convergence, while maintaining highly repeatable, nominally constant test conditions. Even given such stable conditions however, variations in local turbulent fuel-air mixing introduce a degree of variability which may manifest as significant differences in OH* and 2CP results. A statistical method is utilized to analyze the extent of this variability, and to identify superlative injections within the data set for discussion and analysis of shot-to-shot variation. Experimental measurements of characteristic parameters including liquid and vapor jet penetration, lift-off length, soot temperature and concentration, and turbulent flame speed, along with the shot-to-shot variability of each, are presented and discussed. While the results shown here can only postulate about the causation, the framework to characterize shot-to-shot variations could be leveraged to enable direct comparison with high-fidelity simulations without the need for averaging multiple realizations.
Proceedings Papers
Proc. ASME. ICEF2020, ASME 2020 Internal Combustion Engine Division Fall Technical Conference, V001T06A012, November 4–6, 2020
Paper No: ICEF2020-2992
Abstract
Engine knock and misfire are barriers to pathways leading to high-efficiency Spark-Ignited (SI) Natural Gas engines. The general tendency to knock is highly dependent on engine operating conditions and the fuel reactivity. The problem is further complicated by low emission limits and the wide range of chemical reactivity in pipeline quality natural gas. Depending on the region and the source of the natural gas, its reactivity, described by its methane number (analogous to the octane number for liquid SI fuels) can span from 65–95. In order to realize diesel-like efficiencies, SI natural gas engines must be designed to operate at high BMEP near knock limits over a wide range of fuel reactivity. This requires a deep understanding regarding the combustion-engine interactions pertaining to flame propagation and end-gas autoignition (EGAI). However, EGAI, if controlled, provides an opportunity to increase SI natural gas engine efficiency by increasing combustion rate and the total burned fuel, mitigating the effects of the slow flame speeds of natural gas fuels which generally reduce BMEP and increase unburned hydrocarbon emissions. For this reason, in order to study EGAI phenomenon, the present work highlights multi-dimensional computational fluid dynamics (CFD) models of the Cooperative Fuel Research (CFR) engine. The CFR engine models are used to investigate fuel-engine interactions that lead to EGAI with natural gas, including effects of fuel reactivity, engine operating parameters, and exhaust gas recirculation (EGR). A Three-Pressure Analysis, performed with GT-Power, was used to estimate initial and boundary conditions for the three-dimensional CFD model. CONVERGE CFD v2.4 was used for the three-dimensional CFD modeling where the level set G-Equation model and SAGE detailed chemical kinetics solver were used. An assessment of the different modeling approaches is also provided to evaluate their limitations, advantages and disadvantages, and for which situations they are most applicable. Model validation was performed with experimental data taken with a CFR engine over varying compression ratio, CA50, EGR fraction, and IMEP and shows good agreement in Peak Cylinder Pressure (PCP), PCP crank angle, and the location of the 10%, 50%, and 90% mass fraction burned (CA10, CA50, and CA90, respectively). The models can predict the onset crank angle and pressure rise rate for light, medium, and heavy EGAI under a variety of fuel reactivities and engine operating conditions.
Proceedings Papers
Proc. ASME. ICEF2020, ASME 2020 Internal Combustion Engine Division Fall Technical Conference, V001T06A008, November 4–6, 2020
Paper No: ICEF2020-2942
Abstract
The Species-Based Extended Coherent Flamelet Model (SB-ECFM) was developed and previously validated for 3D Reynolds-Averaged Navier-Stokes (RANS) modeling of a spark-ignited gasoline direct injection engine. In this work, we seek to extend the SB-ECFM model to the large eddy simulation (LES) framework and validate the model in a homogeneous charge spark-ignited engine. In the SB-ECFM, which is a recently developed improvement of the ECFM, the progress variable is defined as a function of real species instead of tracer species. This adjustment alleviates discrepancies that may arise when the numerical treatment of real species is different than that of the tracer species. Furthermore, the species-based formulation also allows for the use of second-order numeric, which can be necessary in LES cases. The transparent combustion chamber (TCC) engine is the configuration used here for validating the SB-ECFM. It has been extensively characterized with detailed experimental measurements and the data are widely available for model benchmarking. Moreover, several of the boundary conditions leading to the engine are also measured experimentally. These measurements are used in the corresponding computational setup of LES calculations with SB-ECFM. Since the engine is spark ignited, the Imposed Stretch Spark Ignition Model (ISSIM) is utilized to model this physical process. The mesh for the current study is based on a configuration that has been validated in a previous LES study of the corresponding motored setup of the TCC engine. However, this mesh was constructed without considering the additional cells needed to sufficiently resolve the flame for the fired case. Thus, it is enhanced with value-based Adaptive Mesh Refinement (AMR) on the progress variable to better capture the flame front in the fired case. As one facet of model validation, the ensemble average of the measured cylinder pressure is compared against the LES/SB-ECFM prediction. Secondly, the predicted cycle-to-cycle variation by LES is compared with the variation measured in the experimental setup. To this end, the LES computation is required to span a sufficient number of engine cycles to provide statistical convergence to evaluate the coefficient of variation (COV) in peak cylinder pressure. Due to the higher computational cost of LES, the runtime required to compute a sufficient number of engine cycles sequentially can be intractable. The concurrent perturbation method (CPM) is deployed in this study to obtain the required number of cycles in a reasonable time frame. Lastly, previous numerical and experimental analyses of the TCC engine have shown that the flow dynamics at the time of ignition is correlated with the cycle-to-cycle variability. Hence, similar analysis is performed on the current simulation results to determine if this correlation effect is well-captured by the current modeling approach.
Proceedings Papers
Proc. ASME. ICEF2020, ASME 2020 Internal Combustion Engine Division Fall Technical Conference, V001T06A002, November 4–6, 2020
Paper No: ICEF2020-2916
Abstract
Knock is a major design challenge for spark-ignited engines. Knock constrains high load operation and limits efficiency gains that can be achieved by implementing higher compression ratios. The propensity to knock depends on the interaction among fuel properties, engine geometry, and operating conditions. Moreover, cycle-to-cycle variability (CCV) in knock intensity is commonly encountered under abnormal combustion conditions. In this situation, knock needs to be assessed with multiple engine cycles. Therefore, when using computational fluid dynamics (CFD) to predict knock behavior, multi-cycle simulations must be performed. The wall clock time for simulating multiple consecutive engine cycles is prohibitive, especially for a statistically valid sample size (i.e. 30–100 cycles). In this work, 3-d CFD simulations were used to model knocking phenomena in the cooperative fuel research (CFR) engine. Unsteady Reynolds-Averaged Navier Stokes (uRANS) simulations were performed with a hybrid combustion modeling approach using the G-equation method to track the turbulent flame front and finite-rate chemistry model to predict end-gas autoignition. To circumvent the high cost of running simulations with a large number of consecutive engine cycles, a concurrent perturbation method (CPM) was evaluated to predict knock CCV. The CPM was based on previous work by the authors, in which concurrent engine cycles were used to predict engine CCV in a non-knocking gasoline direct injection (GDI) engine. Concurrent cycles were initialized by perturbing a saved flow field with a random isotropic velocity field. By initializing each cycle with a perturbation sufficiently early in the cycle, each case yields a distinct and valid prediction of combustion due to the chaotic nature of the system. Three operating points were simulated, with different spark timings corresponding to heavy knock, light knock, and no knock. For all the operating points, other conditions were based on the standard research octane number (RON) test specification for iso-octane. The spark timing of the heavy knock case was the same as that of the RON test. The in-cylinder pressure fluctuations were isolated using a frequency filtering method. A bandpass filter was applied to eliminate high and low frequencies. The knocking pressures were calculated consistently between the experimental and simulation data, including the sampling frequency of the data. The simulation data was sampled to match the sampling rate of the experimental data. The knock intensities were compared for the concurrently obtained cycles, the consecutively obtained cycles, and experimental cycles. Knock predictions from the concurrent and consecutive simulations compared well to each other and with experiments, thereby demonstrating the validity of the CPM approach.
Proceedings Papers
Proc. ASME. ICEF2020, ASME 2020 Internal Combustion Engine Division Fall Technical Conference, V001T06A013, November 4–6, 2020
Paper No: ICEF2020-2997
Abstract
Open-cycle engine simulations of a passive pre-chamber operating inside a direct-injected gasoline engine are performed and analyzed in this study. A comprehensive three-dimensional computational fluid dynamics (CFD) model has been formulated with state-of-the-art physical sub-models to account for the complex processes of engine gas exchange, fuel injection and mixing, ignition, and combustion. Numerical results are validated against experimental measurements under low load condition with high internal EGR. Realistic modeling considerations are discussed to ensure proper fidelity. In particular, the mixture conditions and flow motions could present very different features between the pre- and main chamber, which requires comprehensive simulation of the full engine cycle and imposes challenges for combustion modeling. Practically validated chemical kinetics models are essential for proper prediction of cylinder pressure history of pre-chamber jet combustion systems. Detailed analysis is then carried out to highlight key processes associated with pre-chamber operation, including residual scavenging, fuel/air mixture formation, flow pattern and turbulence development within the pre-chamber, and the ignition of main chamber mixture by issued turbulent jets. Numerical evaluation of pre-chamber design variants has been attempted, and less commonly investigated geometry parameters such as swirl nozzles and nozzle umbrella angle are found impactful for pre-chamber ignition performances.
Proceedings Papers
Proc. ASME. ICEF2020, ASME 2020 Internal Combustion Engine Division Fall Technical Conference, V001T07A003, November 4–6, 2020
Paper No: ICEF2020-3045
Abstract
A fuel and engine management system have been successively applied to a 4.5L spark-ignition gaseous-fueled engine used for stationary power generation applications up to 80 kW. The system operates on low-pressure commercial grade natural gas or liquid propane gas and governs engine speed at either 1500 or 1800 rpm, for generator frequencies of 50 Hz and 60 Hz respectively. The fuel and engine management system consist of an engine control module, an electronically controlled fuel mixer, a fuel pressure sensor, and other supporting sensors/actuators. This new system replaces a legacy of fixed-orifice metering or vacuum-actuated-valve mechanical mixer designs. This new system allows for closed-loop control of stoichiometric combustion that meets both performance and emissions requirements without the need for a fuel pressure regulator within the genset frame. It also allows a single fuel system assembly to be used on all 4.5L engines regardless of fuel type (LP/NG) or nominal speed (50/60Hz), as these are now selected with standard J1939 CAN protocol messages from the genset controller. This paper reviews the development aspects for the new fuel system on the 4.5L engine. The electronic-actuated fuel mixer system offers a wider range of fuel flow control compared to mechanical-actuated mixers, this results in better air-fuel control due to variations in fuel quality, low fuel supply pressure and changing ambient conditions. The range of fuel control is result of the different mixer valve construction and control. The fuel metering valve is a butterfly type and is controlled from a stepper motor. The valve controls the fuel flow rate just before the fuel mixes with the combustion air passing thought a venturi. Lag in fuel flow, typical of low supply pressure and low restriction / signal venturi, is corrected for using a feedforward control strategy based on genset electrical load. The mixer sizing and flow bench measurements for calibration, will be reviewed. The ECM uses a speed-density air flow model, along with fuel supply and air filter pressure, to determine the best mixer valve position. The engine air flow model is used for determining venturi flow and the resulting mixer vacuum signal, but a final calibration correction was created with hot wire-anemometer-flow meters on a running engine. A long-term fuel trim is also applied to the mixer position, but unlike a fuel-injection system which corrects volumetric efficiency based on known fuel flow rate and HEGO sensor feedback, this mixer control strategy learns a steady-state mixer correction or offset. The entire control strategy was developed within a Simulink model and auto code generation tools were used to create final ECM C and machine code. The development of the mixer and ECM control strategy will be detailed herein.
Proceedings Papers
Proc. ASME. ICEF2001, Volume 1: Diesel Combustion and Emissions, Fuel Injection and Sprays, 43-49, September 23–26, 2001
Paper No: 2001-ICE-396
Abstract
Spray characteristics of diesel fuel injection system is one of the most important factors in diesel combustion and pollutant emissions especially in HSDI (High Speed Direct Injection) diesel engines where the interval between the onset of combustion and the evaporation of atomized fuel is relatively short. An investigation into various spray characteristics from different holes of VCO (Valve Covered Orifice) nozzles was performed. The global characteristics of spray, including spray angle, spray tip penetration, and spray pattern were measured from the spray images, which were frozen by an instantaneous photography with a spark light source and ICCD. These spray images were acquired sequentially from the first injection to fifth injection to investigate injection-to-injection variation. For better understanding of spray development and their internal structures, a long-distance microscope was used to get magnified spray images at the vicinity of the nozzle hole with a laser sheet illumination. Also backward illuminated images with a spark light source were taken at various points of the spray field including vicinity of the nozzle hole to understand surface structures and breakup process of dense spray from VCO nozzle incorporated with common-rail injection system. As injection pressure increases interaction between spray and ambient air becomes important to liquid penetration and spray angle. Macroscopic spray angle increases due to air entrainment as injection pressure increases though spray angle near the hole seems independent from injection pressure. Liquid penetration is initially affected by injection rate increase as needle is moving upward and liquid penetration increase rate is in accordance with injection pressure. After this stage, air entrainment and high potential of evaporation makes the increase rate slower and this tendency is more obvious for higher injection pressure. Microscopic images taken at the vicinity of the nozzle hole exit reveal that central dense region consists of thick ligaments or membranes and most of the liquid droplets are formed at the tip of ligaments from spray surface due to the waves developed on it. Some smaller liquid droplets seem to be generated from the bubble or membrane breakup process. Droplet sizing was performed from the microscopic images, which were frozen by spark light source that has light duration of 10ns and high-resolution CCD camera equipped with long distance microscope whose magnification factor is more than six. Fuel particle sizes, described as SMD (Sauter Mean Diameter) in many points, decreased during injection durations and higher injection pressure induced smaller value.