Premixed combustion strategies have been shown to yield very low NOx and soot emissions, while maintaining diesel-like efficiency; however, several issues must be addressed before they can gain widespread acceptance. This paper provides guidelines for solving problems with premixed combustion strategies, viz.: lack of combustion phasing control, excessive pressure rise rate, and spray wall impingement due to early injections. Cooled EGR and a multiple injection concept is used to control combustion phasing and reduce the peak pressure rise rate. To address spray-wall impingement, an Adaptive Injection Strategy (AIS) is employed. This strategy uses two injection pulses at different injection pressures to prepare an optimal in-cylinder mixture. The first injection is early in the cycle and utilizes a low injection pressure to minimize spray-wall impingement and create a well mixed charge. The second injection is near TDC and uses a high injection pressure in order to promote air entrainment and droplet dispersion. This study uses a multi-dimensional CFD code coupled with detailed chemistry, the KIVA-CHEMKIN code, to investigate the effects of several influential design parameters and identify emissions and performance tradeoffs. The combustion process considered is at a light load operating condition (nominal IMEP of 5.5 bar and high speed, 2000 rev/min). The parameters studied were: first and second pulse injection pressure and timing, IVC timing, EGR rate, fuel split, swirl ratio, and spray targeting. The investigation showed that the use of low pressure injections early in the cycle allows improved flexibility in fuel quantity and injection timing. An improved solution was found with near zero NOx and soot, a net ISFC of only 175 g/kW-hr, and a peak pressure rise rate of ∼8 bar/deg.
Skip Nav Destination
ASME 2009 Internal Combustion Engine Division Spring Technical Conference
May 3–6, 2009
Milwaukee, Wisconsin, USA
Conference Sponsors:
- Internal Combustion Engine Division
ISBN:
978-0-7918-4340-6
PROCEEDINGS PAPER
Investigation of Design Parameters in Partially Premixed Compression Ignition Combustion Using Adaptive Injection Strategies
Sage L. Kokjohn,
Sage L. Kokjohn
University of Wisconsin - Madison, Madison, WI
Search for other works by this author on:
Rolf D. Reitz
Rolf D. Reitz
University of Wisconsin - Madison, Madison, WI
Search for other works by this author on:
Sage L. Kokjohn
University of Wisconsin - Madison, Madison, WI
Rolf D. Reitz
University of Wisconsin - Madison, Madison, WI
Paper No:
ICES2009-76030, pp. 233-245; 13 pages
Published Online:
August 20, 2009
Citation
Kokjohn, SL, & Reitz, RD. "Investigation of Design Parameters in Partially Premixed Compression Ignition Combustion Using Adaptive Injection Strategies." Proceedings of the ASME 2009 Internal Combustion Engine Division Spring Technical Conference. ASME 2009 Internal Combustion Engine Division Spring Technical Conference. Milwaukee, Wisconsin, USA. May 3–6, 2009. pp. 233-245. ASME. https://doi.org/10.1115/ICES2009-76030
Download citation file:
5
Views
Related Proceedings Papers
Related Articles
An Experimental Investigation of Reactivity-Controlled Compression Ignition Combustion in a Single-Cylinder Diesel Engine Using Hydrous Ethanol
J. Energy Resour. Technol (May,2015)
Comparisons of Diesel PCCI Combustion Simulations Using a Representative Interactive Flamelet Model and Direct Integration of CFD With Detailed Chemistry
J. Eng. Gas Turbines Power (January,2007)
Computational Study to Identify Feasible Operating Space for a Mixed Mode Combustion Strategy—A Pathway for Premixed Compression Ignition High Load Operation
J. Energy Resour. Technol (August,2018)
Related Chapters
Reciprocating Engine Performance Characteristics
Fundamentals of heat Engines: Reciprocating and Gas Turbine Internal Combustion Engines
Lay-Up and Start-Up Practices
Consensus on Operating Practices for Control of Water and Steam Chemistry in Combined Cycle and Cogeneration
Determination of the Effects of Safflower Biodiesel and Its Blends with Diesel Fuel on Engine Performance and Emissions in a Single Cylinder Diesel Engine
International Conference on Software Technology and Engineering, 3rd (ICSTE 2011)