Abstract

Adaptive surface microstructures are used extensively in nature to control various surface properties such as wettability, adhesion, self-cleaning, drag reduction, etc. Regulation of these properties can be achieved with the appropriate employment of a multitude of smart materials, whose characteristics/response can be controlled by noncontact stimuli, e.g., light, heat, or magnetic field. One of the very promising magneto-regulable smart materials are magnetoactive elastomers (MAEs). They are comprised of a compliant polymer matrix with embedded micrometer-sized ferromagnetic particles. The particles interact with each other and a magnetic field. This results in remarkable tunability of the physical properties of MAEs. This paper reports a fast, resilient, and tailored method for direct surface micromachining of MAEs that enables micro-structuring without mechanical contact between the tool and the material, bypassing the usual constraints of conventional fabrication methods. It is shown that it is possible to fabricate a large variety of different microstructure geometries whose precision is limited predominantly by the size of magnetic particles. Lamellar structures with a high aspect ratio (up to 6:1) oriented either perpendicularly to the surface, can be strongly bent by applying magnetic fields in the range of 0–250 mT.

This content is only available via PDF.
You do not currently have access to this content.