Abstract

This paper presents equivalent circuits representing the partial differential equations of the theory of elasticity for bodies of arbitrary shapes. Transient, steady-state, or sinusoidally oscillating elastic-field phenomena may now be studied, within any desired degree of accuracy, either by a “network analyzer,” or by numerical- and analytical-circuit methods. Such problems are the propagation of elastic waves, determination of the natural frequencies of vibration of elastic bodies, or of stresses and strains in steady-stressed states. The elastic body may be non-homogeneous, may have arbitrary shape and arbitrary boundary conditions, it may rotate at a uniform angular velocity and may, for representation, be divided into blocks of uneven length in different directions. The circuits are developed to handle both two- and three-dimensional phenomena. They are expressed in all types of orthogonal curvilinear reference frames in order to simplify the boundary relations and to allow the solution of three-dimensional problems with axial and other symmetry by the use of only a two-dimensional network. Detailed circuits are given for the important cases of axial symmetry, cylindrical co-ordinates (two-dimensional) and rectangular co-ordinates (two- and three-dimensional). Nonlinear stress-strain relations in the plastic range may be handled by a step-by-step variation of the circuit constants. Nonisotropic bodies and nonorthogonal reference frames, however, require an extension of the circuits given. The circuits for steady-state stress and small oscillation phenomena require only inductances and capacitors, while the circuits for transients require also standard (not ideal) transformers. A companion paper deals in detail with numerical and experimental methods to solve the equivalent circuits.

This content is only available via PDF.
You do not currently have access to this content.