In order to develop an accurate one-dimensional model for wave propagation in heterogeneous beams with uniform cross sections, a Hamilton-type principle is developed by incorporating Reissner’s semi-complimentary energy function. Trial displacement and transverse stress fields are constructed from the solutions of micro-boundary value problems (MBVP’s) defined over the cross section. The MBVP’s are developed from asymptotic expansions that assume a small diameter cross section compared to the axial length and a typical signal wavelength. Saint Venant’s semi-inverse torsion and flexure problems are included in the system of MBVP’s. By utilizing the displacement and transverse stress fields constructed from the numerical solutions of the MBVP’s, the constitutive relations are developed. The model generalizes the Mindlin-Hermann rod model and the Timoshenko beam model for anisotropic heterogeneous beams. The accuracy of the model is assessed by comparing the predicted phase velocity spectra to those computed by using a semi-analytical finite element method. Numerical results are shown for reinforced concrete beams with exterior composite layers. [S0021-8936(01)00601-8]

1.
Kapania
,
R. K.
, and
Raciti
,
S.
,
1989
, “
Recent Advances in Analysis of Laminated Beams and Plates, Part I: Shear Effects and Buckling
,”
AIAA J.
,
27
, pp.
923
934
.
2.
Bank
,
L. C.
, and
Kao
,
C. H.
,
1990
, “
Dynamic Response of Thin-Walled Composite Material Timoshenko Beams
,”
ASME J. Energy Resour. Technol.
,
112
, pp.
149
154
.
3.
Song
,
O.
, and
Librescu
,
L.
,
1993
, “
Free Vibration of Anisotropic Composite Thin-Walled Beams of Closed Cross-Section Contour
,”
J. Sound Vib.
,
167
, pp.
129
147
.
4.
Kosmatka
,
J. B.
, and
Dong
,
S. B.
,
1991
, “
Saint-Venant Solutions for Prismatic Anisotropic Beams
,”
Int. J. Solids Struct.
,
28
, pp.
917
938
.
5.
Pecastaings
,
F.
,
Sun
,
Z.
, and
Davenne
,
L.
,
1991
, “
A Saint Venant’s Heterogeneous Beam Theory
,”
Eur. J. Mech. A/Solids
,
10
, pp.
45
69
.
6.
Timoshenko
,
S.
,
1921
, “
On the Correction for Shear of the Differential Equation for Transverse Vibration of Prismatic Bars
,”
Philos. Mag.
,
41
, pp.
744
746
.
7.
Mindlin, R. D., and Herrmann, G., 1951, “A One-Dimensional Theory of Compressional Waves in an Elastic Rod,” Proceedings of the 1st U.S. National Congress of Applied Mechanics, ASME, New York, pp. 187–191.
8.
Pochhammer
,
L.
,
1876
, “
Ueber die Fortpflanzungsgeschwindigkeiten Kleiner Schwingungen in Einem Unbegrenzten Isotropen Kreiscylinder
,”
Z. Math.
,
81
, pp.
324
336
.
9.
Love, A. E. H., 1927, A Treatise on the Mathematical Theory of Elasticity, 4th Ed., Cambridge University Press, London.
10.
Graff, K. F., 1975, Wave Motion in Elastic Solids, Ohio State University Press, Columbus, Ohio.
11.
Yamakawa
,
J.
, and
Murakami
,
H.
,
1997
, “
Longitudinal and Flexural Wave Propagation in Reinforced Concrete Columns
,”
Int. J. Solids Struct.
,
34
, pp.
4357
4376
.
12.
Onoe
,
M.
,
McNiven
,
H. D.
, and
Mindlin
,
R. D.
,
1962
, “
Dispersion of Axially Symmetric Waves in Elastic Rods
,”
ASME J. Appl. Mech.
,
29
, pp.
729
734
.
13.
Pao
,
Y.-H.
, and
Mindlin
,
R. D.
,
1960
, “
Dispersion of Flexural Waves in an Elastic Circular Cylinder
,”
ASME J. Appl. Mech.
,
27
, pp.
513
520
.
14.
Reissner
,
E.
,
1984
, “
On a Certain Mixed Variational Theorem and a Proposed Application
,”
Int. J. Numer. Methods Eng.
,
20
, pp.
1366
1368
.
15.
Murakami
,
H.
,
Reissner
,
E.
, and
Yamakawa
,
J.
,
1996
, “
Anisotropic Beam Theories With Shear Deformation
,”
ASME J. Appl. Mech.
,
63
, pp.
660
668
.
16.
Lekhnitskii, S. G., 1963, Theory of Elasticity of an Anisotropic Elastic Body, Holdin-Day, San Francisco (translated by P. Fern).
17.
Reissner
,
E.
,
1950
, “
On a Variational Theorem in Elasticity
,”
J. Math. Phys.
,
29
, pp.
90
95
.
18.
Bensoussan, A., Lions, J. L., and Papanicolaou, G., 1978, Asymptotic Analysis for Periodic Structures, North-Holland, Amsterdam.
19.
Murakami
,
H.
, and
Hegemier
,
G. A.
,
1986
, “
A Mixture Model for Unidirectionally Fiber-Reinforced Composites
,”
ASME J. Appl. Mech.
,
53
, pp.
765
773
.
20.
Timoshenko, S., and Goodier, J. N., 1970, Theory of Elasticity, 3rd Ed., McGraw-Hill, New York.
21.
Sokolnikoff, I. S., 1956, Mathematical Theory of Elasticity, 2nd Ed., McGraw-Hill, New York.
22.
Murakami
,
H.
, and
Yamakawa
,
J.
,
1998
, “
Torsional Wave Propagation in Reinforced Concrete Columns
,”
Int. J. Solids Struct.
,
35
, pp.
2617
2637
.
23.
Cowper
,
G. R.
,
1966
, “
The Shear Coefficient in Timoshenko’s Beam Theory
,”
ASME J. Appl. Mech.
,
33
, pp.
335
340
.
24.
Dhamarajan
,
S.
, and
McCutchen
,
H.
, Jr.
,
1973
, “
Shear Coefficients for Orthotropic Beams
,”
J. Compos. Mater.
,
7
, pp.
530
535
.
25.
Yamakawa, J., 1996, “Mechanical Modeling of RC Beams,” Ph.D. dissertation, University of California at San Diego, La Jolla, CA.
You do not currently have access to this content.