The canonical problems of rapid indentation by, respectively, a rigid smooth wedge and a rigid smooth cylinder, are examined for a transversely isotropic or orthotropic half-space in plane strain. An exact transient analysis based on integral transforms is carried out for the case of contact zone expansion at a constant subcritical rate. Certain functions in the transform space can be factored in such a manner that the resulting solutions, despite anisotropy, have rather simple forms. This factorization is also exploited to obtain a compact exact formula for the Rayleigh wave speed, which serves as the critical contact zone expansion rate. Aspects of contact zone behavior for the two problems are illustrated for five specific materials.

1.
Johnson, K. L., 1985, Contact Mechanics, Cambridge University Press, Cambridge, UK.
2.
Fichera, G., 1972, “Boundary Value Problems of Elasticity With Unilateral Constraints,” in Handbuch der Physik, VIa/2, Springer, Berlin, pp. 391–424.
3.
Muskhelishvili, N. I., 1975, Some Basic Problems of the Mathematical Theory of Elasticity, Noordhoff, Leyden.
4.
Gladwell, G. M. L., 1980, Contact Problems in the Classical Theory of Elasticity, Sijthoff and Noordhoff, Alphen aan Rijn.
5.
Willis
,
J. R.
,
1966
, “
Hertzian Contact of Anisotropic Bodies
,”
J. Mech. Phys. Solids
,
16
, pp.
163
176
.
6.
Fan
,
H.
, and
Keer
,
L. M.
,
1994
, “
Two-Dimensional Contact on an Anisotropic Half-Space
,”
ASME J. Appl. Mech.
,
61
, pp.
250
255
.
7.
Hanson
,
M. T.
,
1992
, “
The Elastic Field for Spherical Hertzian Contact Including Sliding Friction for Transverse Isotropy
,”
ASME J. Tribol.
,
114
, pp.
606
611
.
8.
Bedding
,
R. J.
, and
Willis
,
J. R.
,
1973
, “
Dynamic Indentation of an Elastic Half-Space
,”
J. Elast.
,
3
, pp.
289
309
.
9.
Georgiadis
,
H. G.
, and
Barber
,
J. R.
,
1993
, “
On the Super-Rayleigh/Subseismic Elastodynamic Indentation Problem
,”
J. Elast.
,
31
, pp.
141
161
.
10.
Brock
,
L. M.
, and
Georgiadis
,
H. G.
,
1994
, “
Dynamic Frictional Indentation of an Elastic Half-Plane by a Rigid Punch
,”
J. Elast.
,
35
, pp.
223
249
.
11.
Borodich
,
F. M.
,
2000
, “
Some Contact Problems of Anisotropic Elastodynamics: Integral Characteristics and Exact Solutions
,”
Int. J. Solids Struct.
,
37
, pp.
3345
3373
.
12.
Payton, R. G., 1983, Elastic Wave Propagation in Transversely Isotropic Media, Martinus Nijhoff, The Hague.
13.
Sokolnikoff, I. S., 1956, Mathematical Theory of Elasticity, 2nd ed., McGraw-Hill, New York.
14.
Scott
,
R. A.
, and
Miklowitz
,
J.
,
1967
, “
Transient Elastic Waves in Anisotropic Plates
,”
ASME J. Appl. Mech.
,
34
, pp.
104
110
.
15.
Nye, J. F., 1957, Physical Properties of Crystals, Their Representation by Tensors and Matrices, Clarendon Press, Oxford, UK.
16.
Theocaris
,
P. S.
, and
Sokolis
,
D. P.
,
2000
, “
Invariant Elastic Constants and Eigentensors of Orthorhombic, Tetragonal, Hexagonal and Cubic Crystalline Media
,”
Acta Crystallogr.
,
A56
, pp.
319
331
.
17.
Achenbach, J. D., 1973, Wave Propagation in Elastic Solids, North-Holland, Amsterdam.
18.
Sneddon, I. N., 1972, The Use of Integral Transforms, McGraw-Hill, New York.
19.
van der Pol, B., and Bremmer, H., 1950, Operational Calculus Based on the Two-Sided Laplace Integral, Cambridge University Press, Cambridge, UK.
20.
Brock
,
L. M.
,
1991
, “
Exact Transient Results for Pure and Grazing Indentation With Friction
,”
J. Elast.
,
33
, pp.
119
143
.
21.
Norris
,
A. N.
, and
Achenbach
,
J. D.
,
1984
, “
Elastic Wave Diffraction by a Semi-Infinite Crack in a Transversely Isotropic Material
,”
Q. J. Mech. Appl. Math.
,
37
, pp.
565
580
.
22.
Buchwald
,
V. T.
,
1961
, “
Rayleigh Waves in Transversely Isotropic Media
,”
Q. J. Mech. Appl. Math.
,
14
, pp.
293
317
.
23.
Brock
,
L. M.
,
1998
, “
Analytical Results for Roots of Two Irrational Functions in Elastic Wave Propagation
,”
J. Aust. Math. Soc. B, Appl. Math.
,
B40
, pp.
72
79
.
24.
deHoop
,
A. T.
,
1960
, “
A Modification of Cagniard’s Method for Seismic Pulse Problems
,”
Appl. Sci. Res.
,
B8
, pp.
349
356
.
25.
Hadamard
,
J.
,
1908
, “
Theories des Equations aux Derives Partielles Lineares Hyperboliques et du Problem de Cauchy
,”
Acta Math.
,
31
, pp.
333
380
.
You do not currently have access to this content.