The canonical problems of rapid indentation by, respectively, a rigid smooth wedge and a rigid smooth cylinder, are examined for a transversely isotropic or orthotropic half-space in plane strain. An exact transient analysis based on integral transforms is carried out for the case of contact zone expansion at a constant subcritical rate. Certain functions in the transform space can be factored in such a manner that the resulting solutions, despite anisotropy, have rather simple forms. This factorization is also exploited to obtain a compact exact formula for the Rayleigh wave speed, which serves as the critical contact zone expansion rate. Aspects of contact zone behavior for the two problems are illustrated for five specific materials.
Issue Section:
Technical Papers
1.
Johnson, K. L., 1985, Contact Mechanics, Cambridge University Press, Cambridge, UK.
2.
Fichera, G., 1972, “Boundary Value Problems of Elasticity With Unilateral Constraints,” in Handbuch der Physik, VIa/2, Springer, Berlin, pp. 391–424.
3.
Muskhelishvili, N. I., 1975, Some Basic Problems of the Mathematical Theory of Elasticity, Noordhoff, Leyden.
4.
Gladwell, G. M. L., 1980, Contact Problems in the Classical Theory of Elasticity, Sijthoff and Noordhoff, Alphen aan Rijn.
5.
Willis
, J. R.
, 1966
, “Hertzian Contact of Anisotropic Bodies
,” J. Mech. Phys. Solids
, 16
, pp. 163
–176
.6.
Fan
, H.
, and Keer
, L. M.
, 1994
, “Two-Dimensional Contact on an Anisotropic Half-Space
,” ASME J. Appl. Mech.
, 61
, pp. 250
–255
.7.
Hanson
, M. T.
, 1992
, “The Elastic Field for Spherical Hertzian Contact Including Sliding Friction for Transverse Isotropy
,” ASME J. Tribol.
, 114
, pp. 606
–611
.8.
Bedding
, R. J.
, and Willis
, J. R.
, 1973
, “Dynamic Indentation of an Elastic Half-Space
,” J. Elast.
, 3
, pp. 289
–309
.9.
Georgiadis
, H. G.
, and Barber
, J. R.
, 1993
, “On the Super-Rayleigh/Subseismic Elastodynamic Indentation Problem
,” J. Elast.
, 31
, pp. 141
–161
.10.
Brock
, L. M.
, and Georgiadis
, H. G.
, 1994
, “Dynamic Frictional Indentation of an Elastic Half-Plane by a Rigid Punch
,” J. Elast.
, 35
, pp. 223
–249
.11.
Borodich
, F. M.
, 2000
, “Some Contact Problems of Anisotropic Elastodynamics: Integral Characteristics and Exact Solutions
,” Int. J. Solids Struct.
, 37
, pp. 3345
–3373
.12.
Payton, R. G., 1983, Elastic Wave Propagation in Transversely Isotropic Media, Martinus Nijhoff, The Hague.
13.
Sokolnikoff, I. S., 1956, Mathematical Theory of Elasticity, 2nd ed., McGraw-Hill, New York.
14.
Scott
, R. A.
, and Miklowitz
, J.
, 1967
, “Transient Elastic Waves in Anisotropic Plates
,” ASME J. Appl. Mech.
, 34
, pp. 104
–110
.15.
Nye, J. F., 1957, Physical Properties of Crystals, Their Representation by Tensors and Matrices, Clarendon Press, Oxford, UK.
16.
Theocaris
, P. S.
, and Sokolis
, D. P.
, 2000
, “Invariant Elastic Constants and Eigentensors of Orthorhombic, Tetragonal, Hexagonal and Cubic Crystalline Media
,” Acta Crystallogr.
, A56
, pp. 319
–331
.17.
Achenbach, J. D., 1973, Wave Propagation in Elastic Solids, North-Holland, Amsterdam.
18.
Sneddon, I. N., 1972, The Use of Integral Transforms, McGraw-Hill, New York.
19.
van der Pol, B., and Bremmer, H., 1950, Operational Calculus Based on the Two-Sided Laplace Integral, Cambridge University Press, Cambridge, UK.
20.
Brock
, L. M.
, 1991
, “Exact Transient Results for Pure and Grazing Indentation With Friction
,” J. Elast.
, 33
, pp. 119
–143
.21.
Norris
, A. N.
, and Achenbach
, J. D.
, 1984
, “Elastic Wave Diffraction by a Semi-Infinite Crack in a Transversely Isotropic Material
,” Q. J. Mech. Appl. Math.
, 37
, pp. 565
–580
.22.
Buchwald
, V. T.
, 1961
, “Rayleigh Waves in Transversely Isotropic Media
,” Q. J. Mech. Appl. Math.
, 14
, pp. 293
–317
.23.
Brock
, L. M.
, 1998
, “Analytical Results for Roots of Two Irrational Functions in Elastic Wave Propagation
,” J. Aust. Math. Soc. B, Appl. Math.
, B40
, pp. 72
–79
.24.
deHoop
, A. T.
, 1960
, “A Modification of Cagniard’s Method for Seismic Pulse Problems
,” Appl. Sci. Res.
, B8
, pp. 349
–356
.25.
Hadamard
, J.
, 1908
, “Theories des Equations aux Derives Partielles Lineares Hyperboliques et du Problem de Cauchy
,” Acta Math.
, 31
, pp. 333
–380
.Copyright © 2001
by ASME
You do not currently have access to this content.