In this paper the problem of a finite crack in a strip of functionally graded piezoelectric material (FGPM) is studied. It is assumed that the elastic stiffness, piezoelectric constant, and dielectric permitivity of the FGPM vary continuously along the thickness of the strip, and that the strip is under an antiplane mechanical loading and in-plane electric loading. By using the Fourier transform, the problem is first reduced to two pairs of dual integral equations and then into Fredholm integral equations of the second kind. The near-tip singular stress and electric fields are obtained from the asymptotic expansion of the stresses and electric fields around the crack tip. It is found that the singular stresses and electric displacements at the tip of the crack in the functionally graded piezoelectric material carry the same forms as those in a homogeneous piezoelectric material but that the magnitudes of the intensity factors are dependent upon the gradient of the FGPM properties. The investigation on the influences of the FGPM graded properties shows that an increase in the gradient of the material properties can reduce the magnitude of the stress intensity factor.

1.
Cady, W. G., 1946, Piezoelectricity, McGraw-Hill, New York.
2.
Ikeda, T., 1996, Fundamentals of Piezoelectricity, Oxford University Press. Oxford, UK.
3.
Jaffe, B., Cook, Jr., W. R., and Jaffe, H., 1971, Piezoelectric Ceramics, Academic Press, London.
4.
Ono
,
T.
,
1990
, “
Optical Beam Deflector Using a Piezoelectric Bimorph Actuator
,”
Sens. Actuators
,
A22
, pp.
726
728
5.
Smits
,
J. G.
,
Dalke
,
S. I.
, and
Cookey
,
T. K.
,
1991
, “
Constituent Equations of Piezoelectric Bimorphs
,”
Sens. Actuators
,
A28
, pp.
41
61
.
6.
Zhu
,
X.
,
Wang
,
Q.
, and
Meng
,
Z.
,
1995
, “
A Functionally Gradient Piezoelectric Actuator Prepared by Power Metallurgical Process in PNN-PZ-PT System
,”
J. Mater. Sci. Lett.
,
14
, pp.
516
518
.
7.
Wu
,
C. M.
,
Kahn
,
M.
, and
Moy
,
W.
,
1996
, “
Piezoelectric Ceramics With Functional Gradients: A New Application in Material Design
,”
J. Am. Ceram. Soc.
,
79
(
3
), pp.
809
812
.
8.
Yamada, K., Sakamura, J., and Nakamura, K., 1998, “Broadband Ultrasound Transducers Using Effectively Graded Piezoelectric Materials,” Proceedings of the IEEE Ultrasonic Symposium, 2, IEEE, Piscataway, NJ, pp. 1085–1089.
9.
Shelley
,
W. F.
,
Wan
,
S.
, and
Bowman
,
K. J.
,
1999
, “
Functionally Graded Piezoelectric Ceramics
,”
Mater. Sci. Forum
,
308–311
, pp.
515
520
.
10.
Hudnut
,
S.
,
Almajid
,
A.
, and
Taya
,
M.
,
2000
, “
Functionally Gradient Piezoelectric Bimorph Type Actuator
,”
Proc. SPIE, C. S. Lynch, ed.
,
3992
, pp.
376
386
.
11.
Zhu
,
X.
,
Xu
,
J.
, and
Meng
,
Z.
, et al.
,
2000
, “
Microdisplacement characteristics and microstructures of functionally gradient piezoelectric ceramic actuator
,”
Mater. Des.
21
, pp.
561
566
.
12.
Parton, V. Z., 1976, “Fracture Behavior of Piezoelectric Materials,” Ph.D. thesis, Purdue University.
13.
Deeg, W. F., 1980, “The Analysis of Dislocation, Crack and Inclusion Problems in Piezoelectric Solids,” Ph.D. thesis, Stanford University.
14.
Sosa
,
H. A.
, and
Pak
,
Y. E.
,
1990
, “
Three-Dimesional Eigenfunction Analysis of a Crack in a Piezoelectric Material
,”
Int. J. Solids Struct.
,
26
, pp.
1
15
.
15.
Pak
,
Y. E.
,
1992
, “
Linear Electroelastic Fracture Mechanics of Piezoelectric Materials
,”
Int. J. Fract.
,
54
, pp.
79
100
.
16.
Suo
,
Z.
,
Kuo
,
C. M.
,
Barnett
,
D. M.
, and
Willis
,
J. R.
,
1992
, “
Fracture Mechanics for Piezoelectric Ceramics
,”
J. Mech. Phys. Solids
,
40
, pp.
739
765
.
17.
Wang
,
B.
,
1992
, “
Three-Dimesional Analysis of a Flat Elliptical Crack in a Piezoelectric Medium
,”
Int. J. Eng. Sci.
,
30
, pp.
781
791
.
18.
Dunn
,
M.
,
1994
, “
The Effects of Crack Face Boundary Conditions on the Fracture Mechanics of Piezoelectric Solids
,”
Eng. Fract. Mech.
,
48
, pp.
25
39
.
19.
Park, S. B., 1994, “Fracture Behavior of Piezoelectric Materials,” Ph.D. thesis, Purdue University.
20.
Park
,
S. B.
, and
Sun
,
C. T.
,
1995
, “
Effect of Electric Field on Fracture of Piezoelectric Ceramic
,”
Int. J. Fatigue
,
70
, pp.
203
216
.
21.
Zhang
,
T.
, and
Tong
,
P.
,
1996
, “
Fracture Mechanics for a Mode III Crack in a Piezoelectric Material
,”
Int. J. Solids Struct.
,
33
(
3
), pp.
343
359
.
22.
Shindo
,
Y.
,
Tanaka
,
K.
, and
Narita
,
F.
,
1997
, “
Singular Stress and Electric Fields of a Piezoelectric Ceramic Strip With a Finite Crack Under Longitudinal Shear
,”
Acta Mech.
,
120
, pp.
31
45
.
23.
Lee
,
P. C. Y.
, and
Yu
,
J. D.
,
1998
, “
Governing Equations for a Piezoelectric Plate With Graded Properties Across the Thickness
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
45
(
1
), pp.
236
250
.
24.
Yamada
,
K.
,
Sakamura
,
J.
, and
Nakamura
,
K.
,
2000
, “
Equivalent Network Representation for Thickness Vibration Modes in Piezoelectric Plates With an Exponentially Graded Parameter
,”
Jpn. J. Appl. Phys., Part 2
,
39
(
1
), A/B, pp.
L34–L37
L34–L37
.
25.
Copson, E. T., 1961, “On Certain Dual Integral Equations,” Proc. Glasgow Math. Assoc., 5, pp. 21–24.
26.
Sih
,
G. C.
, and
Embley
,
G. T.
,
1972
, “
Sudden Twisting of a Penny-Shaped Crack
,”
ASME J. Appl. Mech.
,
39
, pp.
395
400
.
You do not currently have access to this content.