The flow past a bluff body can be controlled significantly by placing small rotating cylinders at appropriate locations. Computational results for control of Re=104 flow past a circular cylinder are presented. Two control cylinders of one-twentieth the diameter of the main cylinder rotate at a rate such that their tip speed is five times the free-stream speed of the flow. Computations are carried out for various values of the gap between the main and control cylinders. A stabilized finite element method is utilized to solve the incompressible Navier-Stokes equations in the primitive variables formulation. A gap value of one-tenth the diameter of the main cylinder is found to be close to the optimal value. Compared to the flow past an isolated cylinder a very significant reduction in the drag and unsteady forces is observed for the flow with control.

1.
Gad el Hak
,
M.
, and
Bushnell
,
D. M.
,
1991
, “
Separation Control: Review
,”
ASME J. Fluids Eng.
,
113
, pp.
5
29
.
2.
Modi
,
V. J.
,
1997
, “
Moving Surface Boundary-Layer Control: A Review
,”
J. Fluids Struct.
,
11
, pp.
627
663
.
3.
Modi
,
V. J.
,
Fernando
,
M. S. U. K.
, and
Yokomizo
,
T.
,
1991
, “
Moving Surface Boundary-Layer Control: Studies with Bluff Bodies and Applications
,”
AIAA J.
,
29
, pp.
1400
1406
.
4.
Modi
,
V. J.
,
Shih
,
E.
,
Ying
,
B.
, and
Yokomizo
,
T.
,
1992
, “
Drag Reduction of Bluff Bodies through Momentum Injection
,”
J. Aircr.
,
29
, pp.
429
436
.
5.
Munshi, S. R., Modi, V. J., and Yokomizo, T., 1997, “Control of Fluid-Structure Interaction Instabilities through Momentum Injection,” in Proceedings of the Seventh Asian Congress of Fluid Mechanics, pp. 335–338, Indian Institute of Technology Madras, Chennai, India, Allied Publishers Limited.
6.
Munshi
,
S. R.
,
Modi
,
V. J.
, and
Yokomizo
,
T.
,
1997
, “
Aerodynamics and Dynamics of Rectangular Prisms with Momentum Injection
,”
J. Fluids Struct.
,
11
, pp.
873
892
.
7.
Choi
,
B.
, and
Choi
,
H.
,
1992
, “
Drag Reduction with a Sliding Wall in Flow over a Circular Cylinder
,”
AIAA J.
,
38
, pp.
715
717
.
8.
Park
,
D. S.
,
Ladd
,
D. M.
, and
Hendricks
,
E. W.
,
1994
, “
Feedback Control of von Karman Vortex Shedding behind a Circular Cylinder at Low Reynolds Numbers
,”
Phys. Fluids
,
6
, pp.
2390
2405
.
9.
Mittal
,
S.
,
2001
, “
Control of Flow Past Bluff Bodies using Rotating Control Cylinders
,”
J. Fluids Struct.
,
15
, pp.
291
326
.
10.
Tokumaru
,
P. T.
, and
Dimotakis
,
P. E.
,
1993
, “
The Lift of a Cylinder Executing Rotary Motions in a Uniform Flow
,”
J. Fluid Mech.
,
255
, pp.
1
10
.
11.
Mittal
,
S.
,
2001
, “
Flow Past Rotating Cylinders: Effect of Eccentricity
,”
ASME J. Appl. Mech.
,
68
, pp.
543
552
.
12.
Mittal
,
S.
, and
Tezduyan
,
T. E.
,
1995
, “
Parallel Finite Element Simulation of 3D Incompressible Flows: Fluid-Structure Interactions
,”
Int. J. Numer. Methods Fluids
,
21
, pp.
933
953
.
13.
Mittal
,
S.
, and
Kumar
,
V.
,
1999
, “
Finite Element Study of Vortex-Induced Cross-Flow and In-Line Oscillations of a Circular Cylinder at Low Reynolds Numbers
,”
Int. J. Numer. Methods Fluids
,
31
, pp.
1087
1120
.
14.
Mittal
,
S.
,
Kumar
,
V.
, and
Raghuvanshi
,
A.
,
1997
, “
Unsteady Incompressible Flow Past Two Cylinders in Tandem and Staggered Arrangements
,”
Int. J. Numer. Methods Fluids
,
25
, pp.
1315
1344
.
15.
Mittal
,
S.
, and
Raghuvanshi
,
A.
,
2001
, “
Control of Vortex Shedding Behind Circular Cylinder for Flow at Low Reynolds Numbers
,”
Int. J. Numer. Methods Fluids
,
35
, pp.
421
447
.
16.
Tezduyar
,
T. E.
,
Mittal
,
S.
,
Ray
,
S. E.
, and
Shih
,
R.
,
1992
, “
Incompressible Flow Computations with Stabilized Bilinear and Linear Equal-Order-Interpolation Velocity-Pressure Elements
,”
Comput. Methods Appl. Mech. Eng.
,
95
, pp.
221
242
.
17.
Akin
,
J. E.
,
Tezduyar
,
T. E.
,
Ungor
,
M.
, and
Mittal
,
S.
,
2003
, “
Stabilization Parameters and Smaogorinsky Turbulence Model
,”
J. Appl. Mech.
70, pp.
2
9
.
18.
Mittal
,
R.
, and
Moin
,
P.
,
1997
, “
Suitability of Upwind-Biased-Finite Differ-ence Schemes for Large-Eddy Simulation of Turbulent Flows
,”
AIAA J.
,
35
, pp.
1415
1415
.
19.
Behr, M., 1992, “Stabilized Finite Element Methods for Incompressible Flows with Emphasis on Moving Boundaries and Interfaces,” Ph.D. thesis, Department of Aerospace Engineering, University of Minnesota.
20.
Beaudan, P., and Moin, P., 1994, “Numerical Experiments on the Flow Past a Circular Cylinder at Sub-Critical Reynolds Number,” Technical Report TF-62, Stanford University, Stanford, CA 94035.
21.
Griffin
,
O. M.
,
1981
, “
Universal Similarity in the Wakes of Stationary and Vibrating Bluff Structures
,”
ASME J. Fluids Eng.
,
103
, pp.
52
58
.
22.
Roshko
,
A.
,
1961
, “
Experiments on the Flow Past a Circular Cylinder at Very High Reynolds Numbers
,”
J. Fluid Mech.
,
10
, pp.
345
356
.
You do not currently have access to this content.