A method is developed to evaluate the natural frequencies and vibration modes of serpentine belt drives where the belt is modeled as a moving beam with bending stiffness. Inclusion of bending stiffness leads to belt-pulley coupling not captured in moving string models. New dynamic characteristics of the system induced by belt bending stiffness are investigated. The belt-pulley coupling is studied through the evolution of the vibration modes. When the belt-pulley coupling is strong, the dynamic behavior of the system is quite different from that of the string model where there is no such coupling. The effects of major design variables on the system are discussed. The spatial discretization can be used to solve other hybrid continuous/discrete eigenvalue problems.

1.
Barker, C. R., Oliver, L. R., and Breig, W. F., 1991, “Dynamic Analysis of Belt Drive Tension Forces During Rapid Engine Acceleration,” SAE Paper 910687.
2.
Hawker, L. E., 1991, “A Vibration Analysis of Automotive Serpentine Accessory Drives Systems,” Ph.D. dissertation, University of Windsor, Ontario.
3.
Hwang
,
S. J.
,
Perkins
,
N. C.
,
Ulsoy
,
A. G.
, and
Meckstroth
,
R. J.
,
1994
, “
Rotational Response and Slip Prediction of Serpentine Belt Drives Systems
,”
ASME J. Vibr. Acoust.
,
116
, pp.
71
78
.
4.
Leamy
,
M. J.
, and
Perkins
,
N. C.
,
1998
, “
Nonlinear Periodic Response of Engine Accessory Drives With Dry Friction Tensioners
,”
ASME J. Vibr. Acoust.
,
120
, pp.
909
916
.
5.
Beikmann
,
R. S.
,
Perkins
,
N. C.
, and
Ulsoy
,
A. G.
,
1996
, “
Free Vibration of Serpentine Belt Drive Systems
,”
ASME J. Vibr. Acoust.
,
118
, pp.
406
413
.
6.
Ulsoy
,
A. G.
,
Whitesell
,
J. E.
, and
Hooven
,
M. D.
,
1985
, “
Design of Belt-Tensioner Systems for Dynamic Stability
,”
ASME J. Vibr. Acoust.
,
107
, pp.
282
290
.
7.
Beikmann
,
R. S.
,
Perkins
,
N. C.
, and
Ulsoy
,
A. G.
,
1996
, “
Design and Analysis of Automotive Serpentine Belt Drive Systems for Steady State Performance
,”
ASME J. Mech. Des.
,
119
, pp.
162
168
.
8.
Zhang
,
L.
, and
Zu
,
J. W.
,
1999
, “
Modal Analysis of Serpentine Belt Drive Systems
,”
J. Sound Vib.
,
222
(
2
), pp.
259
279
.
9.
Zhang
,
L.
,
Zu
,
J. W.
, and
Hou
,
Z.
,
2001
, “
Complex Modal Analysis of Non-Self-Adjoint Hybrid Serpentine Belt Drive Systems
,”
ASME J. Vibr. Acoust.
,
123
(
Apr.
), pp.
150
156
.
10.
Parker
,
R. G.
, 2002, “Efficient Eigensolution, Dynamic Response, and Eigensensitivity of Serpentine Belt Drives,” J. Sound Vib., in press.
11.
Kong
,
L.
, and
Parker
,
R. G.
, 2003, “Equilibrium and Belt-Pulley Vibration Coupling in Serpentine Belt Drives,” ASME J. Appl. Mech., in press.
12.
Love, A. E. H., 1944, A Treatise on the Mathematical Theory of Elasticity, 4th Ed., Dover, New York.
13.
Parker
,
R. G.
, and
Lin
,
Y.
,
2001
, “
Parametric Instability of Axially Moving Media Subjected to Multifrequency Tension and Speed Fluctuations
,”
ASME J. Appl. Mech.
,
68
, pp.
49
57
.
14.
Mockensturm
,
E. M.
,
Perkins
,
N. C.
, and
Ulsoy
,
A. G.
,
1996
, “
Stability and Limit Cycles of Parametrically Excited, Axially Moving Strings
,”
ASME J. Vibr. Acoust.
,
118
, pp.
346
351
.
15.
Pakdemirli
,
M.
, and
Ulsoy
,
A. G.
,
1997
, “
Stability Analysis of an Axially Accelerating String
,”
J. Sound Vib.
,
203
(
5
), pp.
815
832
.
16.
Wickert
,
J. A.
, and
Mote
,
C. D.
, Jr.
,
1990
, “
Classical Vibration Analysis of Axially Moving Continua
,”
ASME J. Appl. Mech.
,
57
, pp.
738
744
.
17.
Wang
,
K. W.
, and
Mote
,
C. D.
, Jr.
,
1986
, “
Vibration Coupling Analysis of Band/Wheel Mechanical Systems
,”
J. Sound Vib.
,
109
, pp.
237
258
.
18.
Mote
,
C. D.
, Jr.
, and
Wu
,
W. Z.
,
1985
, “
Vibration Coupling in Continuous Belt and Band Systems
,”
J. Sound Vib.
,
102
, pp.
1
9
.
19.
Turnbull
,
P. F.
,
Perkins
,
N. C.
, and
Schultz
,
W. W.
,
1995
, “
Contact-Induced Nonlinearity in Oscillating Belts and Webs
,”
J. Vib. Control
,
1
, pp.
459
479
.
20.
Sack
,
R. A.
,
1954
, “
Transverse Oscillations in Traveling Strings
,”
Br. J. Appl. Phys.
,
5
, pp.
224
226
.
21.
Jha
,
R. K.
, and
Parker
,
R. G.
,
2000
, “
Spatial Discretization of Axially Moving Media Vibration Problems
,”
ASME J. Vibr. Acoust.
,
122
, pp.
290
294
.
You do not currently have access to this content.