Diffusion, flow, and wave phenomena can each be captured by a unified differential equation in matrix-vector form. This equation forms the basis for the derivation of unified reciprocity theorems for diffusion, flow and wave phenomena.

1.
De Hoop
,
A. T.
, and
Stam
,
H. J.
,
1988
, “
Time-Domain Reciprocity Theorems for Elastodynamic Wave Fields in Solids With Relaxation and Their Application to Inverse Problems
,”
Wave Motion
,
10
, pp.
479
489
.
2.
Bojarski
,
N. N.
,
1983
, “
Generalized Reaction Principles and Reciprocity Theorems for the Wave Equations, and the Relationship Between the Time-Advanced and Time-Retarded Fields
,”
J. Acoust. Soc. Am.
,
74
, pp.
281
285
.
3.
Fokkema, J. T., and Van den Berg, P. M., 1993, Seismic Applications of Acoustic Reciprocity, Elsevier, Amsterdam.
4.
Lyamshev
,
L. M.
,
1961
, “
On Some Integral Relationships in Acoustics of Moving Medium
,”
Dokl. Akad. Nauk
,
138
, pp.
575
578
.
5.
Allard
,
J. F.
,
Brouard
,
B.
, and
Lafarge
,
D.
,
1993
, “
Reciprocity and Antireciprocity in Sound Transmission Through Layered Materials Including Elastic and Porous Media
,”
Wave Motion
,
17
, pp.
329
335
.
6.
Pride
,
S. R.
, and
Haartsen
,
M. W.
,
1996
, “
Electroseismic Wave Properties
,”
J. Acoust. Soc. Am.
,
100
, pp.
1301
1315
.
7.
Belinskiy
,
B. P.
,
2001
, “
On Some General Mathematical Properties of the System Elastic Plate-Acoustic Medium. Acoustic Interactions With Submerged Elastic Structures, Part II
,”
Ser. Stab. Vib. Control Syst. Ser. B
,
5
, pp.
193
218
.
8.
Fisher
,
M.
, and
Langenberg
,
K. J.
,
1984
, “
Limitations and Defects of Certain Inverse Scattering Theories
,”
IEEE Trans. Antennas Propag.
,
32
, pp.
1080
1088
.
9.
Pride
,
S.
,
1994
, “
Governing Equations for the Coupled Electromagnetics and Acoustics of Porous Media
,”
Phys. Rev. B
,
50
, pp.
678
15
.
10.
Schoenberg
,
M.
, and
Sen
,
P. N.
,
1983
, “
Properties of a Periodically Stratified Acoustic Half-Space and Its Relation to a Biot Fluid
,”
J. Acoust. Soc. Am.
,
73
, pp.
61
67
.
11.
Biot
,
M. A.
,
1956
, “
Theory of Propagation of Elastic Waves in Fluid-Saturated Porous Solid: I. Low Frequency Range
,”
J. Acoust. Soc. Am.
,
28
, pp.
168
178
.
You do not currently have access to this content.