Micromechanics-based effective elastic and plastic formulations of metal matrix composites (MMCs) containing randomly located and randomly oriented particles are developed. The averaging process over all orientations upon three elastic governing equations for aligned particle-reinforced MMCs is performed to obtain the explicit formulation of effective elastic stiffness of MMCs with randomly oriented particles. The effects of volume fraction of particles and particle shape on the overall elastic constants are studied. Comparisons with the Hashin-Shtrikman bounds and Ponte Castaneda-Willis bounds show that the present effective elastic formulation does not violate the variational bounds. Good agreement with experimental elastic stiffness data is also illustrated. Furthermore, the orientational averaging procedure is employed to derive the overall elastoplastic yield function for the MMCs. Elastoplastic constitutive relations for the composites are constructed on the basis of the derived composite yield function. The stress-strain responses of MMCs under the axisymmetric loading are also investigated in detail. Finally, elastoplastic comparisons with the experimental data for SiCp/Al composites are performed to illustrate the capability of the proposed formulation.

1.
Taya, M., and Arsenault, R. J., 1989, Metal Matrix Composites, Thermomechanical Behavior, Pergamon Press, New York.
2.
Cox
,
H. L.
,
1952
, “
The Elasticity and Strength of Paper and Other Fibrous Materials
,”
British J. Appl. Phys.
,
3
, pp.
72
79
.
3.
Christensen
,
R. M.
, and
Waals
,
F. M.
,
1972
, “
Effective Stiffness of Randomly Oriented Fiber Composites
,”
J. Compos. Mater.
,
6
, pp.
518
532
.
4.
Christensen
,
R. M.
,
1976
, “
Asymptotic Modulus Results for Composites Containing Randomly Oriented Fibers
,”
Int. J. Solids Struct.
,
12
, pp.
537
544
.
5.
Chou
,
T. W.
, and
Nomura
,
S.
,
1981
, “
Fiber Orientation Effects on the Thermoelastic Properties of Short-Fiber Composites
,”
Fibre Sci. Technol.
,
14
, pp.
279
291
.
6.
Takao
,
Y.
,
Chou
,
T. W.
, and
Taya
,
M.
,
1982
, “
Effective Longitudinal Young’s Modulus of Misoriented Short Fiber Composites
,”
ASME J. Appl. Mech.
,
49
, pp.
536
540
.
7.
Tandon
,
G. P.
, and
Weng
,
G. J.
,
1986
, “
Average Stress in the Matrix and Effective Moduli of Randomly Oriented Composites
,”
Compos. Sci. Technol.
,
27
, pp.
111
132
.
8.
Benveniste
,
Y.
,
1987
, “
A New Approach to the Application of Mori-Tanaka’s Theory in Composite Materials
,”
Mech. Mater.
,
6
, pp.
147
157
.
9.
Ferrari
,
M.
, and
Johnson
,
G. C.
,
1989
, “
Effective Elasticities of Short-Fiber Composites With Arbitrary Orientation Distribution
,”
Mech. Mater.
,
8
, pp.
67
73
.
10.
Haddad
,
Y. M.
,
1992
, “
On the Deformation Theory of a Class of Randomly Structured Composite Systems
,”
ASME J. Energy Resour. Technol.
,
114
, pp.
110
116
.
11.
Chen
,
T.
,
Dvorak
,
G. J.
, and
Benveniste
,
Y.
,
1992
, “
Mori-Tanaka Estimates of the Overall Elastic Moduli of Certain Composite Materials
,”
ASME J. Appl. Mech.
,
59
, pp.
539
546
.
12.
Banerjee
,
P. K.
, and
Henry
,
D. P.
,
1992
, “
Elastic Analysis of Three-Dimensional Solids With Fiber Inclusions by BEM
,”
Int. J. Solids Struct.
,
29
, pp.
2423
2440
.
13.
Sayers
,
C. M.
,
1992
, “
Elastic Anisotropy of Short-Fiber Reinforced Composites
,”
Int. J. Solids Struct.
,
29
, pp.
2933
2944
.
14.
Papathanasiou
,
T. D.
,
Ingber
,
M. S.
,
Mondy
,
L. A.
, and
Graham
,
A. L.
,
1994
, “
The Effective Elastic Modulus of Fiber-Reinforced Composites
,”
J. Compos. Mater.
,
28
, pp.
288
304
.
15.
Ponte Castaneda
,
P.
, and
Willis
,
J. R.
,
1995
, “
The Effect of Spatial Distribution on the Effective Behavior of Composite Materials and Cracked Media
,”
J. Mech. Phys. Solids
,
43
, pp.
1919
1951
.
16.
Dunn
,
M. L.
,
Ledbetter
,
H.
,
Heyliger
,
P. R.
, and
Choi
,
C. S.
,
1996
, “
Elastic Constants of Textured Short-Fiber Composites
,”
J. Mech. Phys. Solids
,
44
, pp.
1509
1541
.
17.
Luo
,
J.
, and
Stevens
,
R.
,
1996
, “
Micromechanics of Randomly Oriented Ellipsoidal Inclusion Composites, Part I: Stress, Strain and Thermal Expansion
,”
J. Appl. Phys.
,
79
, pp.
9047
9056
.
18.
Luo
,
J.
, and
Stevens
,
R.
,
1996
, “
Micromechanics of Randomly Oriented Ellipsoidal Inclusion Composites, Part II: Elastic Moduli
,”
J. Appl. Phys.
,
79
, pp.
9057
9063
.
19.
Riccardi
,
A.
, and
Montheillet
,
F.
,
1999
, “
A Generalized Self-Consistent Method for Solids Containing Randomly Oriented Spheroidal Inclusions
,”
Acta Mech.
,
133
, pp.
39
56
.
20.
Huang
,
J. H.
,
2001
, “
Some Closed-Form Solutions for Effective Moduli of Composites Containing Randomly Oriented Short Fibers
,”
Mater. Sci. Eng., A
,
A315
, pp.
11
20
.
21.
Mori
,
T.
, and
Tanaka
,
K.
,
1973
, “
Average Stress in Matrix and Average Elastic Energy of Materials With Misfitting Inclusions
,”
Acta Metall.
,
21
, pp.
571
574
.
22.
Qiu
,
Y. P.
, and
Weng
,
G. J.
,
1991
, “
The Influence of Inclusion Shape on the Overall Elastoplastic Behavior of a Two-Phase Isotropic Composite
,”
Int. J. Solids Struct.
,
27
, pp.
1537
1550
.
23.
Qiu
,
Y. P.
, and
Weng
,
G. J.
,
1993
, “
Plastic Potential and Yield Function of Porous Materials With Aligned and Randomly Oriented Spheroidal Voids
,”
Int. J. Plast.
,
9
, pp.
271
290
.
24.
Tandon
,
G. P.
, and
Weng
,
G. J.
,
1988
, “
A Theory of Particle-Reinforced Plasticity
,”
ASME J. Appl. Mech.
,
55
, pp.
126
135
.
25.
Qiu
,
Y. P.
, and
Weng
,
G. J.
,
1992
, “
A Theory of Plasticity for Porous Materials and Particle-Reinforced Composites
,”
ASME J. Appl. Mech.
,
59
, pp.
261
268
.
26.
Li
,
G.
,
Ponte Castaneda
,
P.
, and
Douglas
,
A. S.
,
1993
, “
Constitutive Models for Ductile Solids Reinforced by Rigid Spheroidal Inclusions
,”
Mech. Mater.
,
15
, pp.
279
300
.
27.
Ponte Castaneda
,
P.
,
1991
, “
The Effective Mechanical Properties of Nonlinear Isotropic Composites
,”
J. Mech. Phys. Solids
,
39
, pp.
45
71
.
28.
Ponte Castaneda
,
P.
,
1992
, “
New Variational Principles in Plasticity and Their Application to Composite Materials
,”
J. Mech. Phys. Solids
,
40
, pp.
1757
1788
.
29.
Dunn
,
M. L.
, and
Ledbetter
,
H.
,
1997
, “
Elastic-Plastic Behavior of Textured Short-Fiber Composites
,”
Acta Mater.
,
45
, pp.
3327
3340
.
30.
Bao
,
G.
,
Hutchinson
,
J. W.
, and
McMeeking
,
R. M.
,
1991
, “
Particle Reinforcement of Ductile Matrices Against Plastic Flow and Creep
,”
Acta Metall. Mater.
,
39
, pp.
1871
1882
.
31.
Sorensen
,
N. J.
,
Suresh
,
S.
,
Tvergaard
,
V.
, and
Needleman
,
A.
,
1995
, “
Effects of Reinforcement Orientation on the Tensile Response of Metal-Matrix Composites
,”
Mater. Sci. Eng., A
,
197
, pp.
1
10
.
32.
Dong
,
M.
,
Schmauder
,
S.
,
Bidlingmaier
,
T.
, and
Wanner
,
A.
,
1997
, “
Prediction of the Mechanical Behavior of Short Fiber Reinforced MMCs by Combined Cell Models
,”
Comput. Mater. Sci.
,
9
, pp.
121
133
.
33.
Hashin
,
Z.
, and
Shtrikman
,
S.
,
1963
, “
A Variational Approach to the Theory of the Elastic Behavior Multiphase Materials
,”
J. Mech. Phys. Solids
,
11
, pp.
127
140
.
34.
Ju
,
J. W.
, and
Sun
,
L. Z.
,
2001
, “
Effective Elastoplastic Behavior of Metal Matrix Composites Containing Randomly Located Aligned Spheroidal Inhomogeneities, Part I: Micromechanics-Based Formulation
,”
Int. J. Solids Struct.
,
38
, pp.
183
201
.
35.
Sun
,
L. Z.
, and
Ju
,
J. W.
,
2001
, “
Effective Elastoplastic Behavior of Metal Matrix Composites Containing Randomly Located Aligned Spheroidal Inhomogeneities, Part II: Applications
,”
Int. J. Solids Struct.
,
38
, pp.
203
225
.
36.
Ju
,
J. W.
, and
Chen
,
T. M.
,
1994
, “
Micromechanics and Effective Moduli of Elastic Composites Containing Randomly Dispersed Ellipsoidal Inhomogeneities
,”
Acta Mech.
,
103
, pp.
103
121
.
37.
Ju
,
J. W.
, and
Sun
,
L. Z.
,
1999
, “
A Novel Formulation for the Exterior-Point Eshelby’s Tensor of an Ellipsoidal Inclusion
,”
ASME J. Appl. Mech.
,
66
, pp.
570
574
.
38.
Mura, T., 1987, Micromechanics of Defects in Solids, Second Edition, Martinus Nijhoff, The Netherlands.
39.
Hill
,
R.
,
1963
, “
Elastic Properties of Reinforced Solids: Some Theoretical Principles
,”
J. Mech. Phys. Solids
,
11
, pp.
357
372
.
40.
Walpole
,
L. J.
,
1966
, “
On Bounds for the Overall Elastic Moduli of Inhomogeneous Systems—I
,”
J. Mech. Phys. Solids
,
14
, pp.
151
162
.
41.
Walpole
,
L. J.
,
1966
, “
On Bounds for the Overall Elastic Moduli of Inhomogeneous Systems—II
,”
J. Mech. Phys. Solids
,
14
, pp.
289
301
.
42.
Christensen, R. M., 1991, Mechanics of Composite Materials, Krieger Publishing, Melbourne, Florida.
43.
Wu
,
T. T.
,
1966
, “
The Effect of Inclusion Shape on the Elastic Moduli of a Two-Phase Material
,”
Int. J. Solids Struct.
,
2
, pp.
1
8
.
44.
Willis
,
J. R.
,
1977
, “
Bounds and Self-Consistent Estimates for the Overall Moduli of Anisotropic Composites
,”
J. Mech. Phys. Solids
,
25
, pp.
185
202
.
45.
Yang
,
J.
,
Pickard
,
S. M.
,
Cady
,
C.
,
Evans
,
A. G.
, and
Mehrabian
,
R.
,
1991
, “
The Stress/Strain Behavior of Aluminum Matrix Composites With Discontinuous Reinforcements
,”
Acta Metall. Mater.
,
39
, pp.
1863
1869
.
46.
Li
,
G.
, and
Ponte Castaneda
,
P.
,
1994
, “
Variational Estimates for the Elastoplastic Response of Particle-Reinforced Metal-Matrix Composites
,”
Appl. Mech. Rev.
,
47
, pp.
S77–S94
S77–S94
.
47.
Dvorak
,
G. J.
,
Bahei-El-Din
,
Y. A.
,
Macheret
,
Y.
, and
Liu
,
C. H.
,
1988
, “
An Experimental Study of Elastic-Plastic Behavior of a Fibrous Boron-Aluminum Composite
,”
J. Mech. Phys. Solids
,
36
, pp.
655
687
.
48.
Dvorak, G. J., and Bahei-El-Din, A., 1997, “Inelastic Composite Materials: Tranformation Analysis and Experiments,” Continuum Micromechanics, P. Suquet, ed., CISM Courses and Lectures No. 377, Springer-Verlag, Berlin, pp. 1–59.
49.
Sun, L. Z., 1998, “Micromechanics and Overall Elastoplasticity of Discontinuously Reinforced Metal Matrix Composites,” Ph.D. thesis, University of California—Los Angeles.
You do not currently have access to this content.