This paper presents thermal buckling and post-buckling analyses for moderately thick laminated rectangular plates that contain functionally graded materials (FGMs) and subjected to a uniform temperature change. The theoretical formulation employs the first-order shear deformation theory and accounts for the effect of temperature-dependent thermoelastic properties of the constituent materials and initial geometric imperfection. The principle of minimum total potential energy, the differential quadrature method, and iterative algorithms are used to obtain critical buckling temperatures and the post-buckling temperature-deflection curves. The results are presented for both symmetrically and unsymmetrically laminated plates with ceramic/metal functionally graded layers, showing the effects of temperature-dependent properties, layup scheme, material composition, initial imperfection, geometric parameters, and boundary conditions on buckling temperature and thermal post-buckling behavior.

1.
Tauchert
,
T. R.
,
1991
, “
Thermally Induced Flexure, Buckling, and Vibration of Plates
,”
Appl. Mech. Rev.
,
44
(8–9), pp.
347
360
.
2.
Noor
,
A. K.
, and
Burton
,
W. S.
,
1992
, “
Computational Models for High Temperature Multilayered Plates and Shells
,”
Appl. Mech. Rev.
,
45
(
10
), pp.
419
446
.
3.
Argyris
,
J.
, and
Tenek
,
L.
,
1997
, “
Recent Advances in Computational Thermostructural Analysis of Composite Plates and Shells With Strong Nonlinearity
,”
Appl. Mech. Rev.
,
50
(
5
), pp.
285
307
.
4.
Chen
,
L. W.
, and
Chen
,
L. Y.
,
1989
, “
Thermal Buckling Behaviors of Laminated Composite Plates With Temperature-Dependent Properties
,”
Compos. Struct.
,
13
(
4
), pp.
275
287
.
5.
Chen
,
L. W.
, and
Chen
,
L. Y.
,
1991
, “
Thermal Post-Buckling Behaviors of Laminated Composite Plates With Temperature-Dependent Properties
,”
Compos. Struct.
,
19
(
3
), pp.
267
283
.
6.
Singha
,
M. K.
,
Ramachandra
,
L. S.
, and
Bandyopadhyay
,
J. N.
,
2001
, “
Thermal Post-Buckling Analysis of Laminated Composite Plates
,”
Compos. Struct.
,
54
(
4
), pp.
453
458
.
7.
Argyris
,
J.
, and
Tenek
,
L.
,
1995
, “
Post-Buckling of Composite Laminates Under Compressive Loads and Temperature
,”
Comput. Methods Appl. Mech. Eng.
,
128
(1–2), pp.
49
80
.
8.
Srikanth
,
G.
, and
Kumar
,
A.
,
2003
, “
Post-Buckling Response and Failure of Symmetric Laminates Under Uniform Temperature Rise
,”
Compos. Struct.
,
59
(
1
), pp.
109
118
.
9.
Shen
,
H. S.
,
2001
, “
Thermal Post-Buckling Behavior of Imperfect Shear Deformable Laminated Plates With Temperature-Dependent Properties
,”
Comput. Methods Appl. Mech. Eng.
,
190
(40–41), pp.
5377
5390
.
10.
Shahsiah
,
R.
, and
Eslami
,
M. R.
,
2003
, “
Thermal Buckling of Functionally Graded Cylindrical Shells
,”
J. Therm. Stresses
,
26
(
3
), pp.
277
294
.
11.
Shahsiah
,
R.
, and
Eslami
,
M. R.
,
2003
, “
Functionally Graded Cylindrical Shell Thermal Instability Based on Improved Donnell Equations
,”
AIAA J.
,
41
(
9
), pp.
1819
1826
.
12.
Shen
,
H. S.
,
2002
, “
Postbuckling Analysis of Axially Loaded Functionally Graded Cylindrical Shells in Thermal Environments
,”
Compos. Sci. Technol.
,
62
(7–8), pp.
977
987
.
13.
Shen
,
H. S.
,
2003
, “
Postbuckling Analysis of Pressure-Loaded Functionally Graded Cylindrical Shells in Thermal Environments
,”
Eng. Struct.
,
25
(
4
), pp.
487
497
.
14.
Shen
,
H. S.
,
2002
, “
Postbuckling Analysis of Axially Loaded Functionally Graded Cylindrical Panels in Thermal Environments
,”
Int. J. Solids Struct.
,
39
(
24
), pp.
5991
6010
.
15.
Shen
,
H. S.
, and
Leung
,
A. Y. T.
,
2003
, “
Postbuckling of Pressure-Loaded Functionally Graded Cylindrical Panels in Thermal Environments
,”
J. Eng. Mech.
,
129
(
4
), pp.
414
425
.
16.
Javaheri
,
R.
, and
Eslami
,
M. R.
,
2002
, “
Buckling of Functionally Graded Plates Under In-Plane Compressive Loading
,”
Z. Angew. Math. Mech.
,
82
(
4
), pp.
277
283
.
17.
Najafizadeh
,
M. M.
, and
Eslami
,
M. R.
,
2002
, “
Buckling Analysis of Circular Plates of Functionally Graded Materials Under Uniform Radial Compression
,”
Int. J. Mech. Sci.
,
44
(
12
), pp.
2479
2493
.
18.
Javaheri
,
R.
, and
Eslami
,
M. R.
,
2002
, “
Thermal Buckling of Functionally Graded Plates
,”
AIAA J.
,
40
(
1
), pp.
162
169
.
19.
Javaheri
,
R.
, and
Eslami
,
M. R.
,
2002
, “
Thermal Buckling of Functionally Graded Plates Based on Higher Order Theory
,”
J. Therm. Stresses
,
25
(
7
), pp.
603
625
.
20.
Najafizadeh
,
M. M.
, and
Eslami
,
M. R.
,
2002
, “
First-Order-Theory-Based Thermoelastic Stability of Functionally Graded Material Circular Plates
,”
AIAA J.
,
40
(
7
), pp.
1444
1450
.
21.
Qatu
,
M. S.
, and
Leissa
,
A. W.
,
1993
, “
Buckling or Transverse Deflections of Unsymmetrically Laminated Plates Subjected to In-Plane Loads
,”
AIAA J.
,
31
(
1
), pp.
189
194
.
22.
Yang
,
J.
, and
Shen
,
H. S.
,
2003
, “
Non-Linear Analysis of Functionally Graded Plates Under Transverse and In-Plane Loads
,”
Int. J. Non-Linear Mech.
,
38
(
4
), pp.
467
482
.
23.
Liew
,
K. M.
,
Yang
,
J.
, and
Kitipornchai
,
S.
,
2003
, “
Post-Buckling of Piezoelectric FGM Plates Subjected to Thermo-Electro-Mechanical Loading
,”
Int. J. Solids Struct.
,
40
(
15
), pp.
881
896
.
24.
Jang
,
S. K.
,
Bert
,
C. W.
, and
Striz
,
A. G.
,
1989
, “
Application of Differential Quadrature to Static Analysis of Structural Components
,”
Int. J. Numer. Methods Eng.
,
28
(
3
), pp.
561
577
.
25.
Liew
,
K. M.
,
Ng
,
T. Y.
, and
Zhang
,
J. Z.
,
2002
, “
Differential Quadrature-Layerwise Modeling Technique for Three-Dimensional Analysis of Cross-ply Laminated Plates of Various Edge-Supports
,”
Comput. Methods Appl. Mech. Eng.
,
191
(
35
), pp.
3811
3832
.
26.
Touloukian, Y. S., 1967, Thermophysical Properties of High Temperature Solid Materials, McMilan, New York.
27.
Gauthier, M. M. (ed) 1995, Engineering Materials Handbook-Desk Edition, ASM International, USA.
28.
Noor
,
A. K.
, and
Burton
,
W. S.
,
1992
, “
Three-Dimensional Solutions for Thermal Buckling of Multilayered Anisotropic Plates
,”
J. Eng. Mech.
,
118
(
4
), pp.
683
701
.
29.
Shen
,
H. S.
,
1998
, “
Thermal Postbuckling Analysis of Imperfect Reissner-Mindlin Plates on Softening Nonlinear Elastic Foundations
,”
J. Eng. Math.
,
33
(
3
), pp.
259
270
.
You do not currently have access to this content.