Previous studies assumed that a crack is either impermeable or permeable, which are actually two limiting cases of a dielectric crack. This paper considers the electroelastic problem of a three-dimensional transversely isotropic piezoelectric material with a penny-shaped dielectric crack perpendicular to the poling axis. Using electric boundary conditions controlled by the boundaries of an opening crack, the electric displacements at the crack surfaces are determined. The Hankel transform technique is employed to reduce the considered problem to dual integral equations. By solving resulting equations, the results are presented for the case of remote uniform loading, and explicit expressions for the electroelastic field at any point in the entire piezoelectric body are given in terms of elementary functions. Moreover, the distribution of asymptotic field around the crack front and field intensity factors are determined. Numerical results for a cracked PZT-5H ceramic are evaluated to examine the influence of the dielectric permittivity of the crack interior on the field intensity factors, indicating that the electric boundary conditions at the crack surfaces play an important role in determining electroelastic field induced by a crack, and that the results are overestimated for an impermeable crack, and underestimated for a permeable crack.

1.
Rao
,
S. S.
, and
Sunar
,
M.
,
1994
, “
Piezoelectricity and its Use in Disturbance Sensing and Control of Flexible Structures: A Survey
,”
Appl. Mech. Rev.
,
47
, pp.
113
123
.
2.
Suo
,
Z.
,
Kuo
,
C.-M.
,
Barnett
,
D. M.
, and
Willis
,
J. R.
,
1992
, “
Fracture Mechanics for Piezo-Electric Ceramics
,”
J. Mech. Phys. Solids
,
40
, pp.
739
765
.
3.
Pak
,
Y. E.
,
1990
, “
Crack Extension Force in a Piezoelectric Material
,”
ASME J. Appl. Mech.
,
57
, pp.
647
653
.
4.
Pak
,
Y. E.
,
1992
, “
Linear Electroelastic Fracture Mechanics of Piezoelectric Materials
,”
Int. J. Fract.
,
54
, pp.
79
100
.
5.
Dunn
,
M. L.
,
1994
, “
The Effects of Crack Face Boundary Conditions on the Fracture Mechanics of Piezoelectric Solids
,”
Eng. Fract. Mech.
,
48
, pp.
25
39
.
6.
Gao
,
H.
,
Zhang
,
T.-Y.
, and
Tong
,
P.
,
1997
, “
Local and Global Energy Release Rates for an Electrically Yielded Crack in a Piezoelectric Ceramic
,”
J. Mech. Phys. Solids
,
45
, pp.
491
510
.
7.
Sosa
,
H.
, and
Khutoryansky
,
N.
,
1996
, “
New Developments Concerning Piezoelectric Materials With Defects
,”
Int. J. Solids Struct.
,
33
, pp.
3399
3414
.
8.
Shindo
,
Y.
,
Tanaka
,
K.
, and
Narita
,
F.
,
1997
, “
Singular Stress and Electric Fields of a Piezoelectric Ceramic Strip With a Finite Crack Under Longitudinal Shear
,”
Acta Mech.
,
120
, pp.
31
45
.
9.
Zhang
,
T.-Y.
,
Qian
,
C.-F.
, and
Tong
,
P.
,
1998
, “
Linear Electroelastic Analysis of a Cavity or a Crack in a Piezoelectric Material
,”
Int. J. Solids Struct.
,
35
, pp.
2121
2149
.
10.
Ru
,
C. Q.
,
1999
, “
Electric-Field Induced Crack Closure in Linear Piezoelectric Media
,”
Acta Mater.
,
47
, pp.
4683
4693
.
11.
McMeeking
,
R. M.
,
2001
, “
Towards a Fracture Mechanics for Brittle Piezoelectric and Dielectric Materials
,”
Int. J. Fract.
,
108
, pp.
25
41
.
12.
Yang
,
F.
,
2001
, “
Fracture Mechanics for a Mode I Crack in Piezoelectric Materials
,”
Int. J. Solids Struct.
,
38
, pp.
3813
3830
.
13.
Liu
,
M.
, and
Hsia
,
K. J.
,
2003
, “
Interfacial Cracks Between Piezoelectric and Elastic Materials Under In-Plane Electric Loading
,”
J. Mech. Phys. Solids
,
51
, pp.
921
944
.
14.
Hao
,
T. H.
, and
Shen
,
Z. Y.
,
1994
, “
A New Electric Boundary Condition of Electric Fracture Mechanics and Its Applications
,”
Eng. Fract. Mech.
,
47
, pp.
793
802
.
15.
McMeeking
,
R. M.
,
1999
, “
Crack Tip Energy Release Rate For a Piezoelectric Compact Tension Specimen
,”
Eng. Fract. Mech.
,
64
, pp.
217
244
.
16.
Schneider
,
G. A.
,
Felten
,
F.
, and
McMeeking
,
R. M.
,
2003
, “
The Electrical Potential Difference Across Cracks in PZT Measured by Kelvin Probe Microscopy and the Implications for Fracture
,”
Acta Mater.
,
51
, pp.
2235
2241
.
17.
Zhang
,
T.-Y.
,
Zhao
,
M.
, and
Tong
,
P.
,
2002
, “
Fracture of Piezoelectric Ceramics
,”
Adv. Appl. Mech.
,
38
, pp.
147
289
.
18.
Hao
,
T.-H.
,
2001
, “
Multiple Collinear Cracks in a Piezoelectric Material
,”
Int. J. Solids Struct.
,
38
, pp.
9201
9208
.
19.
Liu
,
B.
,
Fang
,
D.-N.
,
Soh
,
A. K.
, and
Hwang
,
K.-C.
,
2001
, “
An Approach for Analysis of Poled/Depolarized Piezoelectric Materials With a Crack
,”
Int. J. Fract.
,
111
, pp.
395
407
.
20.
Xu
,
X.-L.
, and
Rajapakse
,
R. K. N. D.
,
2001
, “
On a Plane Crack in Piezoelectric Solids
,”
Int. J. Solids Struct.
,
38
, pp.
7643
7658
.
21.
Wang
,
X. D.
, and
Jiang
,
L. Y.
,
2002
, “
Fracture Behavior of Cracks in Piezoelectric Media With Electromechanically Coupled Boundary Conditions
,”
Proc. R. Soc. London, Ser. A
,
458
, pp.
2545
2560
.
22.
Wang
,
B. L.
, and
Mai
,
Y.-W.
,
2003
, “
On the Electrical Boundary Conditions on the Crack Surfaces in Piezoelectric Ceramics
,”
Int. J. Eng. Sci.
,
41
, pp.
633
652
.
23.
Wang
,
B.
,
1992
, “
Three-Dimensional Analysis of a Flat Elliptical Crack in a Piezoelectric Material
,”
Int. J. Eng. Sci.
,
30
, pp.
781
791
.
24.
Wang
,
Z. K.
, and
Zheng
,
B. L.
,
1995
, “
The General Solution of Three-Dimensional Problems in Piezoelectric Media
,”
Int. J. Solids Struct.
,
32
, pp.
105
115
.
25.
Kogan
,
L.
,
Hui
,
C. Y.
, and
Molcov
,
V.
,
1996
, “
Stress and Induction Field of a Spheroidal Inclusion of a Penny-Shaped Crack in a Transversely Isotropic Piezoelectric Material
,”
Int. J. Solids Struct.
,
33
, pp.
2719
2737
.
26.
Zhao
,
M. H.
,
Shen
,
Y. P.
,
Liu
,
Y. J.
, and
Liu
,
G. N.
,
1997
, “
Isolated Crack in Three-Dimensional Piezoelectric Solid: Part I-Solution by Hankel Transform
,”
Theor. Appl. Fract. Mech.
,
26
, pp.
129
139
.
27.
Chen
,
W. Q.
, and
Shioya
,
T.
,
1999
, “
Fundamental Solution for a Penny-Shaped Crack in a Piezoelectric Medium
,”
J. Mech. Phys. Solids
,
47
, pp.
1459
1475
.
28.
Karapetian
,
E.
,
Sevostianov
,
I.
, and
Kachanov
,
M.
,
2000
, “
Penny-Shaped and Half-Plane Cracks in a Transversely Isotropic Piezoelectric Solid Under Arbitrary Loading
,”
Arch. Appl. Mech.
,
70
, pp.
201
229
.
29.
Jiang
,
L. Z.
, and
Sun
,
C. T.
,
2001
, “
Analysis of Indentation Cracking in Piezoceramics
,”
Int. J. Solids Struct.
,
38
, pp.
1903
1918
.
30.
Yang
,
J. H.
, and
Lee
,
K. Y.
,
2001
, “
Penny Shaped Crack in Three-Dimensional Piezoelectric Strip Under In-Plane Normal Loadings
,”
Acta Mech.
,
148
, pp.
187
197
.
31.
Wang
,
B.-L.
,
Noda
,
N.
,
Han
,
J.-C.
, and
Du
,
S.-Y.
,
2001
, “
A Penny-Shaped Crack in a Transversely Isotropic Piezoelectric Layer
,”
Eur. J. Mech. A/Solids
,
20
, pp.
997
1005
.
32.
Lin
,
S.
,
Narita
,
F.
, and
Shindo
,
Y.
,
2003
, “
Electroelastic Analysis of a Penny-Shaped Crack in a Piezoelectric Ceramic Under Mode I Loading
,”
Mech. Res. Commun.
,
30
, pp.
371
386
.
33.
Yang
,
J. H.
, and
Lee
,
K. Y.
,
2003
, “
Penny Shaped Crack in a Piezoelectric Cylinder Surrounded by an Elastic Medium Subjected to Combined In-Plane Mechanical and Electrical Loads
,”
Int. J. Solids Struct.
,
40
, pp.
573
590
.
34.
Ou
,
Z. C.
, and
Chen
,
Y. H.
,
2003
, “
Discussion of the Crack Face Electric Boundary Condition in Piezoelectric Fracture Mechanics
,”
Int. J. Fract.
,
123
, pp.
L151–L155
L151–L155
.
35.
Sneddon, I. N., 1966, Mixed Boundary Value Problems in Potential Theory, North-Holland, Amsterdam.
36.
Sneddon, I. N., and Lowengrub, M., 1969, Crack Problems in the Classical Theory of Elasticity, Wiley, New York.
37.
Fabrikant, V. I., 1991, Mixed Boundary Value Problems of Potential Theory and Their Applications in Engineering, Kluwer Academic Publishers, Dordrecht.
38.
Park
,
S.
, and
Sun
,
C. T.
,
1995
, “
Fracture Criteria for Piezoelectric Ceramics
,”
J. Am. Ceram. Soc.
,
78
, pp.
1475
1480
.
39.
Fabrikant
,
V. I.
,
2003
, “
Computation of Infinite Integrals Involving Three Bessel Functions by Introduction of New Formalism
,”
Z. Angew. Math. Mech.
,
83
, pp.
363
374
.
You do not currently have access to this content.