The phenomenon of three-dimensional (3D) steady-state motion of a string traveling along an invariant curve in a flowing medium is studied. Existence conditions are found using a perturbation scheme where a known two-dimensional (2D) solution is used as an initial approximation.

1.
Miroshnik
,
R.
,
2001
, “
The Phenomenon of Steady-State String Motion
,”
ASME J. Appl. Mech.
,
68
(
4
), pp.
568
574
.
2.
Perkins
,
N. C.
, and
Mote
, Jr,,
C. D.
,
1989
, “
Theoretical and Experimental Stability of Two Translating Cable Equilibria
,”
J. Sound Vib.
,
128
(
3
), pp.
397
410
.
3.
Healey
,
T. J.
, and
Papadopoulos
,
J. N.
,
1990
, “
Steady Axial Motion of Strings
,”
ASME J. Appl. Mech.
,
57
(
3
), pp.
785
787
.
4.
Miroshnik
,
R. A.
,
1972
, “
Research of the Ballistic Antenna Stationary Motion in Flat Homogeneous Flow
,”
Izv. Vuz. Mashinostr.
,
10
, pp.
27
32
.
5.
Lemon
,
G.
, and
Fraser
,
W. B.
,
2001
, “
Steady State Bifurcations and Dynamical Stability of a Whirling Cable Acted on by Aerodynamic Drag
,”
Proc. R. Soc. London, Ser. A
,
457
(
2009
), pp.
1021
1041
.
6.
Svetlicky
,
V. A.
, and
Miroshnik
,
R. A.
,
1975
, “
Research of the Ballistic Antenna Stationary Movement in the Flow of Arbitrary Direction
,”
Soprotivlenie Mater. Teor. Soorujenii
,
27
, pp.
36
42
.
7.
Kurkin
,
V. I.
, and
Miroshnik
,
R. A.
,
1974
, “
Influence of wind loading on the form of ballistic antenna
,”
Izve. Vuz. Mashinostr.
,
5
, pp.
18
21
.
You do not currently have access to this content.