Abstract

A stabilized mixed finite element with elemental embedded strong discontinuities for shear band modeling is presented. The discrete constitutive model, representing the cohesive forces acting across the shear band, is derived from a rate-independent J2 plastic continuum material model with strain softening, by using a projection-type procedure determined by the Continuum-Strong Discontinuity Approach. The numerical examples emphasize the increase of the numerical solution accuracy obtained with the present strategy as compared with alternative procedures using linear triangles.

1.
Armero
,
F.
, and
Garikipati
,
K.
, 1996, “
An Analysis of Strong Discontinuities in Multiplicative Finite Strain Plasticity and Their Relation With the Numerical Simulation of Strain Localization in Solids
,”
Int. J. Solids Struct.
0020-7683,
33
(
20–22
), pp.
2863
2885
.
2.
Regueiro
,
R.
, and
Borja
,
R.
, 1999, “
A Finite Element Model of Localized Deformation in Frictional Materials Taking a Strong Discontinuity Approach
,”
Finite Elem. Anal. Design
0168-874X,
33
, pp.
283
315
.
3.
Samaniego
,
E.
, and
Belytschko
,
T.
, 2005, “
Continuum-Discontinuum Modeling of Shear Bands
,”
Int. J. Numer. Methods Eng.
0029-5981,
62
, pp.
1857
1872
.
4.
Zienkiewicz
,
O. C.
, and
Taylor
,
R. L.
, 2000,
The Finite Element Method
,
Butterworth-Heinemann
,
Oxford, UK.
5.
Hughes
,
T. J. R.
, 1987,
The Finite Element Method. Linear Static and Dynamic Finite Element Analysis
,
Prentice-Hall
,
Englewood Cliffs, NJ.
6.
Cervera
,
M.
,
Chiumenti
,
M.
,
Valverde
,
Q.
, and
Agelet de Saracibar
,
C.
, 2003, “
Mixed Linear/Linear Simplicial Elements for Incompressible Elasticity and Plasticity
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
192
, pp.
5249
5263
.
7.
Sanchez
,
P.
,
Sonzogni
,
V.
, and
Huespe
,
A.
, 2004, “
Evaluation of a Stabilized Mixed Finite Element for Solid Mechanics Problems and its Parallel Implementation
,”
Comput. Struct.
0045-7949 (to be published).
8.
Oliver
,
J.
, 1996a, “
Modeling Strong Discontinuities in Solids Mechanics via Strain Softening Constitutive Equations. Part 1: Fundamentals
,”
Int. J. Numer. Methods Eng.
0029-5981,
39
(
21
), pp.
3575
3600
.
9.
Oliver
,
J.
, 1996b, “
Modeling Strong Discontinuities in Solids Mechanics via Strain Softening Constitutive Equations. Part Numerical Simulation
,”
Int. J. Numer. Methods Eng.
0029-5981,
39
(
21
), pp.
3601
3623
.
10.
Oliver
,
J.
, 2000, “
On the Discrete Constitutive Models Induced by Strong Discontinuity Kinematics and Continuum Constitutive Equations
,”
Int. J. Solids Struct.
0020-7683,
37
, pp.
7207
7229
.
11.
Cervera
,
M.
,
Chiumenti
,
M.
, and
Agelet de Saracibar
,
C.
, 2004, “
Shear Band Localization via Local j2 Continuum Damage Mechanics
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
193
, pp.
849
880
.
12.
Simo
,
J.
,
Oliver
,
J.
, and
Armero
,
F.
, 1993, “
An Analysis of Strong Discontinuities Induced by Strain-Softening in Rate-Independent Inelastic Solids
,”
Comput. Mech.
0178-7675,
12
, pp.
277
296
.
13.
Oliver
,
J.
,
Cervera
,
M.
, and
Manzoli
,
O.
, 1999, “
Strong Discontinuities and Continuum Plasticity Models: The Strong Discontinuity Approach
,”
Int. J. Plast.
0749-6419,
15
(
3
), pp.
319
351
.
14.
Asaro
,
R. J.
, 1983, “
Micromechanics of Crystals and Polycrystals
,”
Adv. Appl. Mech.
0065-2156,
23
, pp.
1
115
.
15.
Oliver
,
J.
,
Huespe
,
A.
, and
Samaniego
,
E.
, 2003, “
A Study On Finite Elements for Capturing Strong Discontinuities
,”
Int. J. Numer. Methods Eng.
0029-5981,
56
, pp.
2135
2161
.
16.
Brezzi
,
F.
, and
Fortin
,
M.
1991,
Mixed and Hybrid Finite Element Methods
,
Springer
,
Berlin
.
17.
Codina
,
R.
, 2000, “
Stabilization of Incompressibility and Convection Through Orthogonal Sub-Scales in Finite Element Method
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
, pp.
1579
1599
.
18.
Codina
,
R.
,
Blasco
,
J.
,
Buscaglia
,
G. C.
, and
Huerta
,
A.
, 2001, “
Implementation of a Stabilized Finite Element Formulation for the Incompressible Navier-Stokes Equations Based on a Pressure Gradient Projection
,”
Int. J. Numer. Methods Eng.
0029-5981,
37
, pp.
419
444
.
19.
Chiumenti
,
M.
,
Valverde
,
Q.
,
Agelet de Saracibar
,
C.
, and
Cervera
,
M.
, 2002, “
Una Formulación Estabilizada Para Plasticidad Incompresible Usando Triangulos y Tetraedros con Interpolaciones Lineales en Desplazamientos y Presiones
,” Métodos Numéricos en Ingeniería V.
20.
Simo
,
J. C.
, and
Hughes
,
T. J. R.
, 1998,
Computational Inelasticity
,
Springer
,
New York
.
21.
Oliver
,
J.
,
Huespe
,
A. E.
,
Blanco
,
S.
, and
Linero
,
D. L.
, 2005, “
Stability and Robustness Issues in Numerical Modeling of Material Failure in the Strong Discontinuity Approach
,” Comput. Methods Appl. Mech. Eng. (in press).
22.
Kanninen
,
M. F.
, and
Popelar
,
H.
, 1985,
Advanced Fracture Mechanics
,
Oxford University Press
,
New York
.
23.
Oliver
,
J.
,
Huespe
,
A. E.
,
Pulido
,
M. D. G.
,
Blanco
,
S.
, and
Linero
,
D. L.
, 2004, “
Recent Advances in Computational Modeling Of Material Failure
,” in
Proc. European Congress on Comput. Methods in Appl. Sciences and Eng.
,
P.
Neittaanmäki
,
T.
Rossi
,
K.
Majava
, and
O.
Pironneau
, eds, ECOMAS 2004, Jyväskylä.
You do not currently have access to this content.