Abstract
A stabilized mixed finite element with elemental embedded strong discontinuities for shear band modeling is presented. The discrete constitutive model, representing the cohesive forces acting across the shear band, is derived from a rate-independent plastic continuum material model with strain softening, by using a projection-type procedure determined by the Continuum-Strong Discontinuity Approach. The numerical examples emphasize the increase of the numerical solution accuracy obtained with the present strategy as compared with alternative procedures using linear triangles.
Issue Section:
Technical
Papers
1.
Armero
, F.
, and Garikipati
, K.
, 1996, “An Analysis of Strong Discontinuities in Multiplicative Finite Strain Plasticity and Their Relation With the Numerical Simulation of Strain Localization in Solids
,” Int. J. Solids Struct.
0020-7683, 33
(20–22
), pp. 2863
–2885
.2.
Regueiro
, R.
, and Borja
, R.
, 1999, “A Finite Element Model of Localized Deformation in Frictional Materials Taking a Strong Discontinuity Approach
,” Finite Elem. Anal. Design
0168-874X, 33
, pp. 283
–315
.3.
Samaniego
, E.
, and Belytschko
, T.
, 2005, “Continuum-Discontinuum Modeling of Shear Bands
,” Int. J. Numer. Methods Eng.
0029-5981, 62
, pp. 1857
–1872
.4.
Zienkiewicz
, O. C.
, and Taylor
, R. L.
, 2000, The Finite Element Method
, Butterworth-Heinemann
, Oxford, UK.
5.
Hughes
, T. J. R.
, 1987, The Finite Element Method. Linear Static and Dynamic Finite Element Analysis
, Prentice-Hall
,Englewood Cliffs, NJ.
6.
Cervera
, M.
, Chiumenti
, M.
, Valverde
, Q.
, and Agelet de Saracibar
, C.
, 2003, “Mixed Linear/Linear Simplicial Elements for Incompressible Elasticity and Plasticity
,” Comput. Methods Appl. Mech. Eng.
0045-7825, 192
, pp. 5249
–5263
.7.
Sanchez
, P.
, Sonzogni
, V.
, and Huespe
, A.
, 2004, “Evaluation of a Stabilized Mixed Finite Element for Solid Mechanics Problems and its Parallel Implementation
,” Comput. Struct.
0045-7949 (to be published).8.
Oliver
, J.
, 1996a, “Modeling Strong Discontinuities in Solids Mechanics via Strain Softening Constitutive Equations. Part 1: Fundamentals
,” Int. J. Numer. Methods Eng.
0029-5981, 39
(21
), pp. 3575
–3600
.9.
Oliver
, J.
, 1996b, “Modeling Strong Discontinuities in Solids Mechanics via Strain Softening Constitutive Equations. Part Numerical Simulation
,” Int. J. Numer. Methods Eng.
0029-5981, 39
(21
), pp. 3601
–3623
.10.
Oliver
, J.
, 2000, “On the Discrete Constitutive Models Induced by Strong Discontinuity Kinematics and Continuum Constitutive Equations
,” Int. J. Solids Struct.
0020-7683, 37
, pp. 7207
–7229
.11.
Cervera
, M.
, Chiumenti
, M.
, and Agelet de Saracibar
, C.
, 2004, “Shear Band Localization via Local j2 Continuum Damage Mechanics
,” Comput. Methods Appl. Mech. Eng.
0045-7825, 193
, pp. 849
–880
.12.
Simo
, J.
, Oliver
, J.
, and Armero
, F.
, 1993, “An Analysis of Strong Discontinuities Induced by Strain-Softening in Rate-Independent Inelastic Solids
,” Comput. Mech.
0178-7675, 12
, pp. 277
–296
.13.
Oliver
, J.
, Cervera
, M.
, and Manzoli
, O.
, 1999, “Strong Discontinuities and Continuum Plasticity Models: The Strong Discontinuity Approach
,” Int. J. Plast.
0749-6419, 15
(3
), pp. 319
–351
.14.
Asaro
, R. J.
, 1983, “Micromechanics of Crystals and Polycrystals
,” Adv. Appl. Mech.
0065-2156, 23
, pp. 1
–115
.15.
Oliver
, J.
, Huespe
, A.
, and Samaniego
, E.
, 2003, “A Study On Finite Elements for Capturing Strong Discontinuities
,” Int. J. Numer. Methods Eng.
0029-5981, 56
, pp. 2135
–2161
.16.
Brezzi
, F.
, and Fortin
, M.
1991, Mixed and Hybrid Finite Element Methods
, Springer
, Berlin
.17.
Codina
, R.
, 2000, “Stabilization of Incompressibility and Convection Through Orthogonal Sub-Scales in Finite Element Method
,” Comput. Methods Appl. Mech. Eng.
0045-7825, 190
, pp. 1579
–1599
.18.
Codina
, R.
, Blasco
, J.
, Buscaglia
, G. C.
, and Huerta
, A.
, 2001, “Implementation of a Stabilized Finite Element Formulation for the Incompressible Navier-Stokes Equations Based on a Pressure Gradient Projection
,” Int. J. Numer. Methods Eng.
0029-5981, 37
, pp. 419
–444
.19.
Chiumenti
, M.
, Valverde
, Q.
, Agelet de Saracibar
, C.
, and Cervera
, M.
, 2002, “Una Formulación Estabilizada Para Plasticidad Incompresible Usando Triangulos y Tetraedros con Interpolaciones Lineales en Desplazamientos y Presiones
,” Métodos Numéricos en Ingeniería V.20.
Simo
, J. C.
, and Hughes
, T. J. R.
, 1998, Computational Inelasticity
, Springer
, New York
.21.
Oliver
, J.
, Huespe
, A. E.
, Blanco
, S.
, and Linero
, D. L.
, 2005, “Stability and Robustness Issues in Numerical Modeling of Material Failure in the Strong Discontinuity Approach
,” Comput. Methods Appl. Mech. Eng. (in press).22.
Kanninen
, M. F.
, and Popelar
, H.
, 1985, Advanced Fracture Mechanics
, Oxford University Press
, New York
.23.
Oliver
, J.
, Huespe
, A. E.
, Pulido
, M. D. G.
, Blanco
, S.
, and Linero
, D. L.
, 2004, “Recent Advances in Computational Modeling Of Material Failure
,” in Proc. European Congress on Comput. Methods in Appl. Sciences and Eng.
, P.
Neittaanmäki
, T.
Rossi
, K.
Majava
, and O.
Pironneau
, eds, ECOMAS 2004, Jyväskylä.Copyright © 2006
by American
Society of Mechanical Engineers
You do not currently have access to this content.