Elucidation of magnetic stabilization of boiling two-phase flow by utilizing the magnetization of the fluid is proposed herein. The effect of magnetic field on the stability of the boiling two-phase pipe flow of the magnetic fluid under a nonuniform magnetic field is investigated both theoretically and experimentally. First, governing equations of boiling two-phase flow based on the unsteady thermal nonequilibrium two-fluid model are presented and analytically solved using a linearization method. The analytical results on stabilization are then inspected experimentally using an experimental apparatus composed of a small test loop. Results of the analytical study on the void waves, show that the stabilization of two-phase flow can be obtained by practical use of the magnetic body force acting on the fluid and by applying the appropriate superficial gas-phase velocity. Those results also show that magnetic stabilization is obtained because the two-phase magnetic body force enhances the diffusion effect of the void waves. It is experimentally clarified that the two-phase flow state can be stabilized and homogenized by magnetization of the fluid and that vapor bubbles can be minutely produced by effective use of the magnetic body force. The axial magnetic field is more effective for stabilization and homogenization of the two-phase magnetic fluid flow than the transverse magnetic field.

1.
Rosensweig
,
R. E.
, 1985,
Ferrohydrodynamics
,
Cambridge University Press
,
NY
.
2.
Rosensweig
,
R. E.
, and
Ciprios
,
G.
, 1991, “
Magnetic Liquid Stabilization of Fluidization in a Bed of Nonmagnetic Spheres
,”
Powder Technol.
0032-5910,
64
, pp.
115
123
.
3.
Ishimoto
,
J.
,
Okubo
,
M.
,
Nishiyama
,
H.
, and
Kamiyama
,
S.
, 1995, “
Basic Study on an Energy Conversion System Using Gas-Liquid Two-Phase Flows of Magnetic Fluid (Analysis on the Mechanism of Pressure Rise)
,”
JSME Int. J., Ser. B
1340-8054,
39
, pp.
72
79
.
4.
Ishimoto
,
J.
, 2004, “
Numerical Prediction of Cavitating MHD Flow of Electrically Conducting Magnetic Fluid in a Converging-Diverging Nozzle
,”
ASME J. Appl. Mech.
0021-8936,
71
(
6
), pp.
825
838
.
5.
Petrick
,
M.
, and
Branover
,
H.
, 1985, “
Liquid Metal MHD Power Generation—Its Evolution and Status
,”
Prog. Astronaut. Aeronaut.
0079-6050,
100
, pp.
371
400
.
6.
Fedonenko
,
A. I.
, and
Smirnov
,
V. I.
, 1983, “
Particle Interaction and Clumping an Electrically Conducting Magnetic Fluid
,”
J. Magn. Magn. Mater.
0304-8853,
19
, pp.
388
391
.
7.
Charles
,
S. W.
, and
Popplewell
,
J.
, 1980, “
Progress in the Development of Ferromagnetic Liquids
,”
IEEE Trans. Magn.
0018-9464,
MAG-16
, pp.
172
177
.
8.
Shepherd
,
P. G.
, and
Popplewell
,
J.
, 1971, “
Ferrofluids Containing Ni–Fe Alloy Particles
,”
Philos. Mag.
0031-8086,
23
, pp.
239
242
.
9.
Alekseev
,
V. A.
, 1991, “
Structural Transformations in an Electrically Conducting Ferrocolloid
,”
Magnetohydrodynamics (N.Y.)
0024-998X,
27
, pp.
18
22
.
10.
Alekseev
,
V. A.
,
Veprik
,
I. Y.
,
Minukov
,
S. G.
, and
Fedonenko
,
A. I.
, 1990, “
Influence of Microstructure on Physico-Mechanical Properties of Liquid Metal-Based Magnetic Colloids
,”
J. Magn. Magn. Mater.
0304-8853,
85
, pp.
133
136
.
11.
Okubo
,
M.
,
Ishimoto
,
J.
,
Nishiyama
,
H.
, and
Kamiyama
,
S.
, 1993, “
Analytical Study on Two-Phase MHD Flow of Electrically Conducting Magnetic Fluid
,”
Magnetohydrodynamics (N.Y.)
0024-998X,
29
, pp.
291
297
.
12.
Eckert
,
S.
,
Gerbeth
,
G.
, and
Lielausis
,
O.
, 2000, “
The Behaviour of Gas Bubbles in a Turbulent Liquid Metal Magnetohydrodynamic Flow, Part I: Dispersion in Quasi-Two-Dimensional Magnetohydrodynamic Turbulence
,”
Int. J. Multiphase Flow
0301-9322,
26
, pp.
45
66
.
13.
Eckert
,
S.
,
Gerbeth
,
G.
, and
Lielausis
,
O.
, 2000, “
The Behaviour of Gas Bubbles in a Turbulent Liquid Metal Magnetohydrodynamic Flow, Part II: Magnetic Field Influence on the Slip Ratio
,”
Int. J. Multiphase Flow
0301-9322,
26
, pp.
67
82
.
14.
Anderson
,
T. B.
, and
Jackson
,
R.
, 1968, “
Fluid Mechanical Description of Fluidized Beds: Stability of State of Uniform Fluidization
,”
Ind. Eng. Chem. Fundam.
0196-4313,
7
(
1
), pp.
12
21
.
15.
Liu
,
Y. A.
,
Hamby
,
R. K.
, and
Colberg
,
R. D.
, 1991, “
Fundamental and Practical Developments of Magnetofluidized Beds: A Review
,”
Powder Technol.
0032-5910,
64
, pp.
3
41
.
16.
Hou
,
Y. Y.
, and
Williams
,
R. A.
, 2002, “
Magnetic Stabilisation of a Liquid Fluidised Bed
,”
Powder Technol.
0032-5910,
124
(
3
), pp.
287
294
.
17.
Z. Al-Qodah
,
M. A.-B.
, and
Al-Hassan
,
M.
, 2001, “
Hydro-Thermal Behavior of Magnetically Stabilized Fluidized Beds
,”
Powder Technol.
0032-5910,
115
(
1
), pp.
58
67
.
18.
Ganzha
,
V. L.
, and
Saxena
,
S. C.
, 2000, “
Hydrodynamic Behavior of Magnetically Stabilized Fluidized Beds of Magnetic Particles
,”
Powder Technol.
0032-5910,
107
, pp.
31
35
.
19.
Kataoka
,
I.
, and
Serizawa
,
A.
, 1989, “
Basic Equations of Turbulence in Gas-Liquid Two-Phase Flow
,”
Int. J. Multiphase Flow
0301-9322,
15
, pp.
843
855
.
20.
Tomiyama
,
A.
, and
Shimada
,
N.
, 2001, “
A Numerical Method for Bubbly Flow Simulation Based on a Multi-Fluid Model
,”
ASME J. Pressure Vessel Technol.
0094-9930,
123
, pp.
510
516
.
21.
Clift
,
R.
,
Grace
,
J. R.
, and
Weber
,
M. E.
, 1978,
Bubbles, Drops, and Particles
,
Academic
,
San Diego, CA
.
22.
Brennen
,
C. E.
, 2005,
Fundamentals of Multiphase Flow
,
Cambridge University Press
,
NY
.
23.
Otis
,
D. R.
, 1966, “
Computation and Measurement of Hall Potentials and Flow-Field Perturbations in Magnetogasdynamic Flow of an Axisymmetric Free Jet
,”
J. Fluid Mech.
0022-1120,
24
, pp.
41
63
.
You do not currently have access to this content.