In this part of the work we present some applications of the formulation developed in Part I (Kövecses, 2008, “Dynamics of Mechanical Systems and the Generalized Free-Body Diagram—Part I: General Formulation,” ASME J. Appl. Mech., 75(6), p. 061012) for the generalized free-body diagram in configuration space. This involves the specification and imposition of constraint conditions, which were identified as Step 2 of the analysis of a mechanical system in Part I. We will particularly consider bilaterally and unilaterally constrained systems, where constraints are realized via ideal or nonideal interfaces. We also look at the general case where the constraint configuration is possibly redundant. The results represent novel forms of dynamics models for mechanical systems, and can offer the possibility to gain more insight for simulation, design, and control.

1.
Kövecses
,
J.
, 2008, “
Dynamics of Mechanical Systems and the Generalized Free-Body Diagram—Part I: General Formulation
,”
ASME J. Appl. Mech.
0021-8936,
75
(
6
), p.
061012
.
2.
Hamel
,
G.
, 1949,
Theoretische Mechanik
,
Springer
,
Berlin
.
3.
Rosenberg
,
R. M.
, 1977,
Analytical Dynamics of Discrete Systems
,
Plenum Press
,
New York
.
4.
Pars
,
L. A.
, 1964,
A Treatise on Analytical Dynamics
,
Heinemann
,
London
.
5.
Lure
,
A.
, 2002,
Analytical Mechanics
,
Springer
,
Berlin
.
6.
Papastavridis
,
J. G.
, 2002,
Analytical Mechanics
,
Oxford University Press
,
New York
.
7.
Kane
,
T. R.
, and
Levinson
,
D. A.
, 1985,
Dynamics, Theory and Applications
,
McGraw-Hill
,
New York
.
8.
Greenwood
,
D. T.
, 2003,
Advanced Dynamics
,
Cambridge University Press
,
Cambridge
.
9.
Schiehlen
,
W.
, 1997, “
Multibody System Dynamics: Roots and Perspectives
,”
Multibody Syst. Dyn.
1384-5640,
1
(
2
), pp.
149
188
.
10.
Eberhard
,
P.
, and
Schiehlen
,
W.
, 2006, “
Computational Dynamics of Multibody Systems: History, Formalisms, and Applications
,”
ASME J. Comput. Nonlinear Dyn.
1555-1423,
1
, pp.
3
12
.
11.
Shabana
,
A. A.
, 2001,
Computational Dynamics
,
Wiley
,
New York
.
12.
Udwadia
,
F. E.
, and
Kalaba
,
R. E.
, 1992, “
A New Perspective on Constrained Motion
,”
Proc. R. Soc. London, Ser. A
1364-5021,
439
(
1906
), pp.
407
410
.
13.
Udwadia
,
F. E.
, and
Kalaba
,
R. E.
, 1996,
Analytical Dynamics—A New Approach
,
Cambridge University Press
,
Cambridge
.
14.
Udwadia
,
F. E.
, and
Kalaba
,
R. E.
, 2002, “
What Is the General Form of the Explicit Equations of Motion for Constrained Mechanical Systems?
,”
ASME J. Appl. Mech.
0021-8936,
69
, pp.
335
339
.
15.
Udwadia
,
F. E.
, and
Kalaba
,
R. E.
, 2001, “
Explicit Equations of Motion for Mechanical Systems with Nonideal Constraints
,”
ASME J. Appl. Mech.
0021-8936,
68
, pp.
462
467
.
16.
Udwadia
,
F. E.
,
Kalaba
,
R. E.
, and
Phohomsiri
,
P.
, 2004, “
Mechanical Systems With Nonideal Constraints: Explicit Equations Without the Use of Generalized Inverses
,”
ASME J. Appl. Mech.
0021-8936,
71
, pp.
615
621
.
17.
Udwadia
,
F. E.
, and
Kalaba
,
R. E.
, 2002, “
On the Foundations of Analytical Dynamics
,”
Int. J. Non-Linear Mech.
0020-7462,
37
, pp.
1079
1090
.
18.
Udwadia
,
F. E.
, and
Kalaba
,
R. E.
, 2000, “
Nonideal Constraints and Lagrangian Dynamics
,”
J. Aerosp. Eng.
0893-1321,
13
(
1
), pp.
17
22
.
19.
Pfeiffer
,
F.
, and
Glocker
,
Ch.
, 1996,
Multibody Dynamics With Unilateral Contacts
,
Wiley
,
New York
.
20.
Moreau
,
J. J.
, 1988, “
Unilateral Contact and Dry Friction in Finite Freedom Dynamics
,”
Non-Smooth Mechanics and Applications
(
CISM courses and Lectures
Vol.
302
),
J. J.
Moreau
and
P. D.
Panagiotopoulos
, eds.,
Springer
,
Wien
, pp.
1
82
.
21.
Pfeiffer
,
F.
, 1999, “
Unilateral Problems of Dynamics
,”
Arch. Appl. Mech.
0939-1533,
69
, pp.
502
527
.
22.
Glocker
,
Ch.
, 2001,
Set-Valued Force Laws: Dynamics of Non-Smooth Systems
,
Springer-Verlag
,
Berlin
.
23.
Brogliato
,
B.
, 1999,
Nonsmooth Mechanics
,
Springer
,
London
.
24.
Kövecses
,
J.
,
Piedboeuf
,
J.-C.
, and
Lange
,
C.
, 2003, “
Dynamics Modeling and Simulation of Constrained Robotic Systems
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
8
(
2
), pp.
165
177
.
25.
Kövecses
,
J.
, and
Piedboeuf
,
J.-C.
, 2003, “
A Novel Approach for the Dynamic Analysis and Simulation of Constrained Mechanical Systems
,” ASME Paper No. DETC2003-VIB-48318.
26.
Pfeiffer
,
F.
,
Foerg
,
M.
, and
Ulbrich
,
H.
, 2006, “
Numerical Aspects of Non-Smooth Multibody Dynamics
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
195
, pp.
6891
6908
.
You do not currently have access to this content.