In classical elasticity, when cracks are modeled with stress-free elliptical holes, stress singularities occur as crack-tip root radii go to zero. This raises the question of when crack-tip stresses first start to depart from physical reality as radii go to zero. To address this question, here, cohesive stress action is taken into account as radii go to zero. To obtain sufficient resolution of the key crack-tip fields, two highly focused numerical approaches are employed: finite elements with successive submodeling concentrated on the crack-tip and numerical analysis of a companion integral equation with considerable discretization refinement at the crack-tip. Both numerical approaches are verified with convergence checks and test problems. Results show that for visible cracks, classical elasticity analysis leads to physically sensible stresses, provided that crack-tip radii are accounted for properly. For microcracks with smaller crack-tip radii, however, cohesive stress action also needs to be included if accurate crack-tip stresses are to be obtained. For cracks with yet smaller crack-tip radii, cracks close and stresses throughout the crack plane become uniform.

1.
Griffith
,
A. A.
, 1921, “
The Phenomena of Rupture and Flow in Solids
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
221
, pp.
163
198
.
2.
Inglis
,
C. E.
, 1913, “
Stresses in a Plate Due to the Presence of Cracks and Sharp Corners
,”
Trans. Inst. Nav. Archit.
0035-8967,
55
, pp.
219
241
.
3.
Thomson
,
W.
, and
Tait
,
P. G.
, 1867,
A Treatise on Natural Philosophy
,
Cambridge University Press
,
Cambridge
.
4.
Barenblatt
,
G. I.
, 1959, “
On the Equilibrium of Cracks Due to Brittle Fracture
,”
Dokl. Akad. Nauk SSSR
0002-3264,
127
, pp.
47
50
.
5.
Barenblatt
,
G. I.
, 1962, “
The Mathematical Theory of Equilibrium Cracks in Brittle Fracture
,”
Adv. Appl. Mech.
0065-2156,
7
, pp.
55
129
.
6.
Kirugulige
,
M.
, and
Tippur
,
H. V.
, 2008, “
Mixed-Mode Dynamic Crack Growth in a Functionally Graded Particulate Composite: Experimental Measurements and Finite Element Simulations
,”
ASME J. Appl. Mech.
0021-8936,
75
, p.
051102
.
7.
Kandula
,
S. S. V.
,
Abanto-Bueno
,
J.
,
Lambros
,
J.
, and
Geubelle
,
P. H.
, 2006, “
Cohesive Modeling of Quasi-Static Fracture in Functionally Graded Materials
,”
ASME J. Appl. Mech.
0021-8936,
73
, pp.
783
791
.
8.
Zavattieri
,
P. D.
, 2006, “
Modeling of Crack Propagation in Thin-Walled Structures Using a Cohesive Model for Shell Elements
,”
ASME J. Appl. Mech.
0021-8936,
73
, pp.
948
958
.
9.
Zhang
,
W.
, and
Deng
,
X.
, 2007, “
Elastic Fields Around the Cohesive Zone of a Mode III Crack Perpendicular to a Bimaterial Interface
,”
ASME J. Appl. Mech.
0021-8936,
74
, pp.
1049
1052
.
10.
Sinclair
,
G. B.
, and
Meda
,
G.
, 2001, “
On Some Anomalies in Lamé’s Solutions for Elastic Solids With Holes
,”
ASME J. Appl. Mech.
0021-8936,
68
, pp.
132
134
.
11.
Kondo
,
M.
, and
Sinclair
,
G. B.
, 1982, “
Stress and Displacement Fields for an Elliptical Hole in a Thick Elastic Plate Under Tension
,” Department of Mechanical Engineering, Carnegie Mellon University, Report No. SM 82-15.
12.
Israelachvili
,
J. N.
, 1992,
Intermolecular and Surface Forces
, 2nd ed.,
Academic
,
San Diego
.
13.
Cherepanov
,
G. P.
, 1979,
Mechanics of Brittle Fracture
,
McGraw-Hill
,
New York
.
14.
ANSYS Inc.
, 2006, ANSYS Users Manual (Rev. 10.0).
15.
Sinclair
,
G. B.
,
Meda
,
G.
, and
Smallwood
,
B. S.
, 2007, “
On the Stresses at a Griffith Crack
,” Department of Mechanical Engineering, Louisiana State University, Report No. ME-MA1-07.
16.
De Vahl Davis
,
G.
, 1983, “
Natural Convection of Air in a Square Cavity: A Bench-Mark Numerical Solution
,”
Int. J. Numer. Methods Fluids
0271-2091,
3
, pp.
249
264
.
17.
Roache
,
P. J.
, 1994, “
Perspective: A Method for Uniform Reporting of Grid Refinement Studies
,”
ASME J. Fluids Eng.
0098-2202,
116
, pp.
405
413
.
18.
Roache
,
P. J.
, 1998, “
Verification of Codes and Calculations
,”
AIAA J.
0001-1452,
36
, pp.
696
702
.
19.
Roache
,
P. J.
, 1998,
Verification and Validation in Computational Science and Engineering
,
Hermosa
,
Albuquerque, NM
.
20.
Sinclair
,
G. B.
, and
Beisheim
,
J. R.
, 2008, “
Simple Convergence-Divergence Checks for Finite Element Stresses
,” Department of Mechanical Engineering, Louisiana State University, Report No. ME-MS1-08.
21.
Cormier
,
N. G.
,
Smallwood
,
B. S.
,
Sinclair
,
G. B.
, and
Meda
,
G.
, 1999, “
Aggressive Submodelling of Stress Concentrations
,”
Int. J. Numer. Methods Eng.
0029-5981,
46
, pp.
889
909
.
22.
Hetényi
,
M.
, 1966, “
Beams and Plates on Elastic Foundations and Related Problems
,”
Appl. Mech. Rev.
0003-6900,
19
, pp.
95
102
.
23.
Westergaard
,
H. M.
, 1939, “
Bearing Pressures and Cracks
,”
ASME J. Appl. Mech.
0021-8936,
6
, pp.
A49
A53
.
24.
Hertz
,
H.
, 1882, “
Über die Berührung Fester Elastischer Körper
,”
J. Reine Angew. Math.
0075-4102,
92
, pp.
156
171
.
You do not currently have access to this content.