Abstract

A computational approach is presented in this paper for the direct numerical simulation of 3D particulate flows. The given approach is based on the fictitious domain method, whereby the Discrete Element Method (DEM) and the Finite Element Method (FEM) are explicitly coupled for the numerical treatment of particle-fluid interactions. The particle properties are constitutively described by an adhesive viscoelastic model. To compute the hydrodynamic forces, a direct integration method is employed, where the fluid stresses are integrated over the particles’ surfaces. For the purpose of verifying the presented approach, computational results are shown and compared with those of the literature. Finally, the method is applied for the simulation of an agglomeration example.

References

1.
Johnson
,
A. A.
, and
Tezduyar
,
T. E.
, 1996,
“Simulation of Multiple Spheres Falling in a Liquid-Filled Tube,”
Comput. Meth. Appl. Mech. Eng.
,
134
, pp.
351
373
.
2.
Johnson
,
A. A.
, and
Tezduyar
,
T. E.
, 1997,
“3D Simulation of Fluid-Particle Interactions With the Number of Particles Reaching 100,”
Comput. Meth. Appl. Mech. Eng.
,
145
, pp.
301
321
.
3.
Johnson
,
A. A.
, and
Tezduyar
,
T. E.
, 1999,
“Advanced Mesh Generation and Update Methods for 3D Flow Simulations,”
Comput. Mech.
,
23
, pp.
130
143
.
4.
Johnson
,
A. A.
, and
Tezduyar
,
T. E.
, 2001,
“Methods for 3D computation of Fluid-Object Interactions in Spatially Periodic Flows,”
Comput. Meth. Appl. Mech. Eng.
,
190
, pp.
3201
3221
.
5.
Zhu
,
H. P.
,
Zhou
,
Z. Y.
,
Yang
,
R. Y.
, and
Yu
,
A. B.
, 2007,
“Discrete Particle Simulation of Particulate Systems: Theoretical Developments,”
Chem. Eng. Sci.
,
62
, pp.
3378
3396
.
6.
Zohdi
,
T. I.
, 2007,
Introduction to the Modeling and Simulation of Particulate Flows.
SIAM
,
Philadelphia, PA
.
7.
Tezduyar
,
T. E.
,
Behr
,
M.
, and
Liou
,
J.
, 1992,
“A New Strategy for Finite Element Computations Involving Moving Boundaries and Interfaces - The Deforming-Spatial-Domain/Space-Time Procedure: I. The Concept and the Preliminary Numerical Tests,”
Comput. Meth. Appl. Mech. Eng.
,
94
, pp.
339
351
.
8.
Tezduyar
,
T. E.
,
Behr
,
M.
,
Mittal
,
S.
, and
Liou
,
J.
, 1992,
“A New Strategy for Finite Element Computations Involving Moving Boundaries and Interfaces - The Deforming-Spatial-Domain/Space-Time Procedure: II. Computation of Free-Surface Flows, Two-Liquid flows, and Flows With Drifting Cylinders,”
Comput. Meth. Appl. Mech. Eng.
,
94
, pp.
353
371
.
9.
Glowinski
,
R.
,
Pan
,
T. W.
,
Hesla
,
T. I.
,
Joseph
,
D. D.
, and
Periaux
,
J.
, 1999,
“A Distributed Lagrange Multiplier/Fictitious Domain Method for Flows Around Moving Rigid Bodies: Application to Particulate Flow,”
Int. J. Numer. Methods Fluids
,
30
, pp.
1043
1066
.
10.
Alder
,
B. J.
, and
Wainwright
,
T. E.
, 1957,
“Phase Transition for a Hard Sphere System,”
J. Chem. Phys.
,
27
, pp.
1208
1209
.
11.
Cundall
,
P. A.
, and
Strack
,
O. D. L.
, 1979,
“Discrete Numerical Model for Granular Assemblies,”
Geotechnique
,
29
, pp.
47
65
.
12.
Hertz
,
H.
, 1882,
“Über die Berührung fester Elastischer Körper,”
J. Reine U. Angew. Math.
,
92
, pp.
156
171
.
13.
Brilliantov
,
N. V.
,
Spahn
,
F.
,
Hertzsch
,
J. M.
, and
Pöschel
,
T.
, 1996,
“Model for Collisions in Granular Gases,”
Phys. Rev. E
,
53
, pp.
5382
5392
.
14.
Brilliantov
,
N. V.
,
Albers
,
N.
,
Spahn
,
F.
, and
Pöschel
,
T.
, 2007,
“Collision Dynamics of Granular Particles With Adhesion,”
Phys. Rev. E
,
76
, pp.
1
12
.
15.
Johnson
,
K. L.
,
Kendall
,
K.
, and
Roberts
,
A. D.
, 1971,
“Surface Energy and Contact of Elastic Solids,”
Proc. R. Soc. London, Ser. A
,
324
, pp.
301
313
.
16.
Loskofsky
,
C.
,
Song
,
F.
, and
Newby
,
B. Z.
, 2006,
“Underwater Adhesion Measurements Using the JKR Technique,”
J. Adhes.
,
82
, pp.
713
730
.
17.
Maugis
,
D.
, 1992,
“Adhesion of Spheres - The JKR-DMT Transition Using a Dugdale Model,”
J. Colloid Interface Sci.
,
150
, pp.
243
269.
18.
Wriggers
,
P.
, 2006,
Computational Contact Mechanics,
2nd ed.,
Springer
,
Berlin
.
19.
Wellmann
,
C.
,
Lillie
,
C.
, and
Wriggers
,
P.
, 2008,
“A Contact Detection Algorithm for Superellipsoids Based on the Common-Normal Concept,”
Eng. Comput.
,
25
, pp.
432
442
.
20.
Luding
,
S.
, 2004,
“Micro-Macro Transition for Anisotropic, Frictional Granular Packings,”
Int. J. Solids Struct.
,
41
, pp.
5821
5836.
21.
Wriggers
,
P.
, 1987,
“On Consistent Tangent Matrices for Frictional Contact Problems,”
Proceedings of NUMETA 87 Conference
,
Dordrecht
.
22.
Dominik
,
C.
, and
Tielens
,
A. G. G. M.
, 1995,
“Resistance to Rolling in the Adhesive Contact of 2 Elastic Spheres,”
Philos. Mag. A
,
72
, pp.
783
803
.
23.
Iwashita
,
K.
, and
Oda
,
M.
, 1998,
“Rolling Resistance at Contacts in Simulation of Shear Band Development by DEM,”
J. Eng. Mech.
,
124
, pp.
285
292.
24.
Kuhn
,
M.
, and
Bagi
,
K.
, 2004,
“Alternative Definition of Particle Rolling in a Granular Assembly,”
J. Eng. Mech.
,
130
, pp.
826
835
.
25.
Lebedev
,
V. I.
, and
Laikov
,
D. N.
, 1999,
“Quadrature Formula for the Sphere of 131-th Algebraic Order of Accuracy,”
Dokl. Akad. Nauk
,
366
, pp.
741
745
.
26.
Takiguchi
,
S.
,
Kajishima
,
T.
, and
Miyake
,
Y.
, 1999,
“Numerical Scheme to Resolve the Interaction Between Solid Particles and Fluid Turbulence,”
JSME Int J., Ser. B
,
42
, pp.
411
418.
27.
Kajishima
,
T.
,
Takiguchi
,
S.
,
Hamasaki
,
H.
, and
Miyake
,
Y.
, 2001,
“Turbulence Structure of Particle-Laden Flow in a Vertical Plane Channel due to Vortex Shedding,”
JSME Int J., Ser. B
,
44
, pp.
526
535.
28.
Duchanoy
,
C.
, and
Jongen
,
T. R. G.
, 2003,
“Efficient Simulation of Liquid-Solid Flows With High Solids Fraction in Complex Geometries,”
Comput. Fluids
,
32
, pp.
1453
1471
.
29.
Wan
,
D.
, and
Turek
,
S.
, 2006,
“Direct Numerical Simulation of Particulate Flow via Multigrid FEM Techniques and the Fictitious Boundary Method,”
Int. J. Numer. Methods Fluids
,
51
, pp.
531
566
.
30.
Luo
,
K.
,
Wang
,
Z.
, and
Fan
,
J.
, 2007,
“A Modified Immersed Boundary Method for Simulations of Fluid-Particle Interactions,”
Comput. Meth. Appl. Mech. Eng.
,
197
, pp.
36
46
.
31.
Turek
,
S.
, 1999,
Efficient Solvers for Incompressible Flow Problems
,
Springer
,
Berlin.
32.
Turek
,
S.
, and
Becker
,
C.
, 1998,
FEATFLOW. Finite Element Software for the Incompressible Navier-Stokes Equations,
University of Heidelberg
,
Berlin
.
33.
Allen
,
M. P.
, and
Tildesley
,
D. J.
, 1987,
Computer Simulation of Liquids,
Oxford University Press
,
New York.
34.
Feng
,
Y. T.
,
Han
,
K.
, and
Owen
,
D. R. J.
, 2007,
“Coupled Lattice Boltzmann Method and Discrete Element Modelling of Particle Transport in Turbulent Fluid Flows: Computational Issues,”
Int. J. Numer. Methods Eng.
,
72
, pp.
1111
1134
.
35.
Verlet
,
L.
, 1967,
“Computer Experiments on Classical Fluids.I. Thermodynamical Properties of Lennard-Jones Molecules,”
Phys. Rev.
,
159
, pp.
98
103
.
36.
Quentrec
,
B.
, and
Brot
,
C.
, 1973,
“New Method for Searching for Neighbors in Molecular Dynamics Computations,”
J. Comput. Phys.
,
13
, pp.
430
432
.
37.
Pöschel
,
T.
, and
Schwager
,
T.
, 2005,
Computational Granular Dynamics
,
Springer
,
Berlin
.
38.
Johnson
,
T. A.
, and
Patel
,
V. C.
, 1999,
“Flow Past a Sphere up to a Reynolds Number of 300,”
J. Fluid Mech.
,
378
, pp.
19
70
.
39.
Tabata
,
M.
, and
Itakura
,
K.
, 1998,
“A Precise Computation of Drag Coefficients of a Sphere,”
Int. J. Comput. Fluid Dyn.
,
9
, pp.
303
311.
40.
Brown
,
P. P.
, and
Lawler
,
D. F.
, 2003,
“Sphere Drag and Settling Velocity Revisited,”
J. Environ. Eng.
,
129
, pp.
222
231.
41.
Shirayama
,
S.
, 1992,
“Flow Past a Sphere - Topological Transitions of the Vorticity Field,”
AIAA J.
,
30
, pp.
349
358
.
42.
Clift
,
R.
,
Grace
,
J. R.
, and
Weber
,
M. E.
, 1978,
Bubbles, Drops and Particles
,
Academic Press
,
New York
.
43.
Taneda
,
S.
, 1956,
“Experimental Investigation of the Wake Behind a Sphere at Low Reynolds Numbers,”
J. Phys. Soc. Japan
,
11
, pp.
1104
1108.
44.
Magnaudet
,
J.
,
Rivero
,
M.
, and
Fabre
,
J.
, 1995,
“Accelerated Flows Past a Rigid Sphere or a Spherical Bubble. 1. Steady Straining Flow,”
J. Fluid Mech.
,
284
, pp.
97
135
.
45.
Tomboulides
,
A. G.
, and
Orszag
,
S. A.
, 2000,
“Numerical Investigation of Transitional and Weak Turbulent Flow Past a Sphere,”
J. Fluid Mech.
,
416
, pp.
45
73
.
46.
Kalra
,
T. R.
, and
Uhlherr
,
P. H. T.
, 1971,
“Properties of Bluff Body Wakes,”
4th AustralAsian Conference on Hydraulics and Fluid Mechanics
,
Melbourne
.
47.
Cheng
,
N.-S.
, 2009,
“Comparison of Formulas for Drag Coefficient and Settling Velocity of Spherical Particles,”
Powder Technol.
,
189
, pp.
395
398.
48.
Fortes
,
A. F.
,
Joseph
,
D. D.
, and
Lundgren
,
T. S.
, 1987,
“Nonlinear Mechanics of Fluidization of Beds of Spherical-Particles,”
J. Fluid Mech.
,
177
, pp.
467
483
.
49.
Diaz-Goano
,
C.
,
Minev
,
P. D.
, and
Nandakumar
,
K.
, 2003,
“A Fictitious Domain/Finite Element Method for Particulate Flows,”
J. Comput. Phys.
,
192
, pp.
105
123.
You do not currently have access to this content.