A scalable and efficient monolithic approach based on the Balancing Domain Decomposition (BDD) method for acoustic fluid-structure interaction problems is developed. The BDD method is a well-known domain decomposition method for non-overlapping sub-domains, which consists of Neumann-Neumann (NN) preconditioning and coarse grid correction. In this study, we derive four types of BDD method, considering two options for NN preconditioning (NN-I and NN-C) and two options for coarse grid correction (CGC-FULL and CGC-DIAG). From the results of numerical experiments, the combination of NN-I and CGC-FULL turns out to be the most efficient scheme, showing fast convergence property irrespective of the number of sub-domains, DOFs of fluid and solid domains, and the added-mass effect of fluid. The combination of NN-I and CGC-DIAG is also expected to be an efficient scheme in some situations in a parallel environment.

References

1.
Ohayon
,
R.
, 2001, “
Reduced Symmetric Models for Modal Analysis of Internal Structural-Acoustic and Hydroelastic-Sloshing Systems
,”
Comput. Meth. Appl. Mech. Eng.
,
190
, pp.
3009
3019
.
2.
Morland
,
H. J. -P. J.-P.
, and
Ohayon
,
R.
, 1995,
Fluid Structure Interaction - Applied Numerical Methods.
John Wiley & Sons
,
New York.
3.
Mandel
,
J.
, 2002, “
An Iterative Substructuring Method for Coupled Fluid-Solid Acoustic Problems
,”
J. Comput. Phys.
,
177
, pp.
95
116
.
4.
Ross
,
M. R.
,
Felippa
,
C. A.
,
Park
,
K. C.
, and
Sprague
,
M. A.
, 2008, “
Treatment of Acoustic Fluid-Structure Interaction by Localized Lagrange Multipliers: Formulation
,”
Comput. Meth. Appl. Mech. Eng.
,
197
, pp.
3057
3079
.
5.
Park
,
K. C.
,
Felippa
,
C. A.
, and
Ohayon
,
R.
, 2001, “
Partitioned Formulation of Internal Fluid-Structure Interaction Problems by Localized Lagrange Multipliers
,”
Comput. Meth. Appl. Mech. Eng.
,
190
(
24–25
), pp.
2989
3007
.
6.
Takizawa
,
K.
,
Moorman
,
C.
,
Wright
,
S.
,
Spielman
,
T.
, and
Tezduyar
,
T. E.
, 2011, “
Fluid-Structure Interaction Modeling and Performance Analysis of the Orion Spacecraft Parachutes
,”
Int. J. Numer. Methods Fluids
,
65
, pp.
271
285
.
7.
Takizawa
,
K.
,
Wright
,
S.
,
Moorman
,
C.
, and
Tezduyar
,
T. E.
, 2011, “
Fluid-Structure Interaction Modeling of Parachute Clusters
,”
Int. J. Numer. Methods Fluids
,
65
, pp.
286
307
.
8.
Kalro
,
V.
, and
Tezduyar
,
T. E.
, 2000, “
A Parallel 3D Computational Method for Fluid-Structure Interactions in Parachute Systems
,”
Comput. Meth. Appl. Mech. Eng.
,
190
, pp.
321
332
.
9.
Le Tallec
,
P.
, and
Mouro
,
J.
, 2001, “
Fluid Structure Interaction with Large Structural Displacements
,”
Comput. Meth. Appl. Mech. Eng.
,
190
(
24–25
), pp.
3039
3067
.
10.
Matthies
,
H. G.
,
Niekamp
,
R.
, and
Steindorf
,
J.
, 2006, “
Algorithms for Strong Coupling Procedures
,”
Comput. Meth. Appl. Mech. Eng.
,
195
, pp.
2028
2049
.
11.
Michler
,
C.
,
van Brummelen
,
E. H.
, and
de Borst
,
R.
, 2005, “
An Interface Newton-Krylov Solver for Fluid-Structure Interaction
,”
Int. J. Numer. Methods Fluids
,
47
(
10–11
), pp.
1189
1195
.
12.
Heil
,
M.
, 2004, “
An Efficient Solver for the Fully-Coupled Solution of Large-Displacement Fluid-Structure Interaction Problems
,”
Comput. Meth. Appl. Mech. Eng.
,
193
, pp.
1
23
.
13.
Ishihara
,
D.
, and
Yoshimura
,
S.
, 2005, “
A Monolithic Approach for Interaction of Incompressible Viscous Fluid and an Elastic Body Based on Fluid Pressure Poisson Equation
,”
Int. J. Numer. Meth. Eng.
,
64
, pp.
167
203
.
14.
Liew
,
K. M.
,
Wang
,
W. Q.
,
Zhang
,
L. X.
, and
He
,
X. Q.
, 2007, “
A Computational Approach for Predicting the Hydroelasticity of Flexible Structures Based on the Pressure Poisson Equation
,”
Int. J. Numer. Meth. Eng.
72
, pp.
1560
1583
.
15.
Washio
,
T.
,
Hisada
,
T.
,
Watanabe
,
H.
, and
Tezduyar
,
T. E.
, 2005, “
A Robust Preconditioner for Fluid-Structure Interaction Problems
,”
Comput. Meth. Appl. Mech. Eng.
,
194
, pp.
4027
4047
.
16.
Badia
,
S.
,
Quaini
,
A.
, and
Quarteroni
,
A.
, 2008, “
Modular vs. Non-Modular Preconditioners for Fluid-Structure Systems With Large Added-Mass Effect
,”
Comput. Meth. Appl. Mech. Eng.
,
197
, pp.
4216
4232
.
17.
Kuttler
,
U.
,
Gee
,
M. W.
,
Forster
,
Ch.
,
Comerford
,
A.
, and
Wall
,
W. A.
, 2010, “
Coupling Strategies for Biomedical Fluid-Structure Interaction Problems
,”
Int. J. Numer. Meth. Biomed. Eng.
,
26
, pp.
305
321
.
18.
Tezduyar
,
T. E.
,
Sathe
,
S.
,
Keedy
,
R.
, and
Stein
,
K.
, 2006, “
Space-Time Finite Element Techniques for Computation of Fluid-Structure Interactions
,”
Comput. Meth. Appl. Mech. Eng.
,
195
, pp.
2002
2027
.
19.
Tezduyar
,
T. E.
,
Sathe
,
S.
, and
Stein
,
K.
, 2006, “
Solution Techniques for the Fully Discretized Equations in Computation of Fluid-Structure Interactions With the Space-Time Formulations
,”
Comput. Meth. Appl. Mech. Eng.
,
195
(
41–43
), pp.
5743
5753
.
20.
Tezduyar
,
T. E.
, and
Sathe
,
S.
, 2007, “
Modeling of Fluid-Structure Interactions With the Space-Time Finite Elements: Solution Techniques
,”
Int. J. Numer. Methods Fluids
,
54
, pp.
855
900
.
21.
Tezduyar
,
T. E.
,
Sathe
,
S.
,
Pausewang
,
J.
,
Schwaab
,
M.
Christopher
,
J.
, and
Crabtree
,
J.
, 2008, “
Interface Projection Techniques for Fluid-Structure Interaction Modeling With Moving-Mesh Methods
,”
Comput. Mech.
,
43
, pp.
39
49
.
22.
Tezduyar
,
T. E.
,
Sathe
,
S.
,
Schwaab
,
M.
,
Pausewang
,
J.
,
Christopher
,
J.
, and
Crabtree
,
J.
, 2008, “
Fluid-Structure Interaction Modeling of Ringsail Parachutes
,”
Comput. Mech.
,
43
, pp.
133
142
.
23.
Manguoglu
,
M.
,
Takizawa
,
K.
,
Sameh
,
A. H.
, and
Tezduyar
,
T. E.
, 2010, “
Solution of Linear Systems in Arterial Fluid Mechanics Computations With Boundary Layer Mesh Refinement
,”
Comput Mech.
,
46
, pp.
83
89
.
24.
Mandel
,
J.
, 1993, “
Balancing Domain Decomposition
,”
Comm. Numer. Meth. Eng.
,
9
, pp.
233
241
.
25.
Shioya
,
R.
,
Ogino
,
M.
,
Kanayama
,
H.
, and
Tagami
,
D.
, 2003, “
Large Scale Finite Element Analysis with a Balancing Domain Decomposition Method
,”
Key Eng. Mater.
,
243–244
, pp.
21
26
.
26.
Ogino
,
M.
,
Shioya
,
R.
, and
Kanayama
,
H.
, 2008, “
An Inexact Balancing Preconditioner for Large-Scale Structural Analysis
,”
J. Comput. Sci. Tech.
,
2
(
1
), pp.
150
161
.
27.
Mukaddes
,
A. M. M.
,
Ogino
,
M.
,
Kanayama
,
H.
, and
Shioya
,
R.
, 2006, “
A Scalable Balancing Domain Decomposition Based Preconditioner for Large Scale Heat Transfer Problems
,”
JSME Int. J. Series B
,
49
(
2
), pp.
533
540
.
28.
Achdou
,
Y.
,
Le Tallec
,
P.
,
Nataf
,
F.
, and
Vidrascu
,
M.
, 2000, “
A Domain Decomposition Preconditioner for an Advection-Diffusion Problem
,”
Comp. Meth. Appl. Mech. Eng.
,
184
, pp.
145
170
.
29.
Pavarino
,
L. F.
, and
Wildlund
,
O. B.
, 2002, “
Balancing Neumann-Neumann Methods for Incompressible Stokes Equations
,”
Comm. Pure Appl. Math.
,
55
(
3
), pp.
302
335
.
30.
Yao
,
Q.
,
Kanayama
,
H.
,
Notsu
,
H.
, and
Ogino
,
M.
, 2010, “
Balancing Domain Decomposition for Non-Stationary Incompressible Flow Problems Using a Characteristic-Curve Method
,”
J. Comput. Sci. Tech.
,
4
(
2
), pp.
121
135
.
You do not currently have access to this content.