This paper presents the effect of randomness in material properties on piezolaminated composite geometrically nonlinear conical shell panel subjected to thermoelectromechanical loading acting simultaneously or individually. Material properties such as modulus ratio, Poisson’s ratio, and thermal expansion coefficients are modeled as independent random variables. The temperature field considered is assumed to be a uniform distribution over the shell panel surface and through the shell thickness and the electric field is assumed to be the transverse component Ez only. It is assumed that the mechanical properties do not depend on temperature and electric fields. The basic formulation is based on higher order shear deformation theory (HSDT) with von-Karman nonlinearity. A C0 nonlinear finite element model based on direct iterative approach in conjunction with mean centered first order perturbation technique (FOPT) used by the present author for plate is now extended for conical shell panel to solve a random nonlinear generalized eigenvalue problem. Parametric studies are carried out to examine the effect of amplitude ratios, stacking sequences, cone angles, circumferential length to thickness ratios, piezoelectric layers, applied voltages, change in temperature, types of thermoelectromechanical loadings, and support boundary conditions on the dimensionless mean and coefficient of variance (COV) of laminated conical shell panels. The present outlined approach has been validated with those available results in literature and independent Monte Carlo simulation (MCS).

References

1.
Bhimaraddi
,
A.
,
Carr
,
J.
, and
Moss
,
P. J.
, 1989, “
A Shear Deformable Finite Element for the Analysis of General Shells of Revolution
,”
Comp. Struct.
,
31
(
3
), pp.
229
308
.
2.
Tzou
,
H. S.
, and
Tseng
,
C. I.
, 1991, “
Distributed Modal Identification and Vibration Control of Continua: Piezoelectric Finite Element Formulation and Analysis
,”
ASME J. Dyn. Syst. Meas. Control
,
113
, pp.
500
505
.
3.
Shankara
,
C. A.
, and
Iyengar
,
N. G. R.
, 1996, “
A C0 Element For the Free Vibration Analysis of Laminated Composite Plates
,”
J. Sound Vib.
,
191
(
5
), pp.
721
738
.
4.
Pinto Correia
,
I. F.
,
Mota Soares
,
C. M.
,
Mota Soares
,
C. A.
, and
Herskovits
,
J.
, 2002, “
Active Control of Axisymmetric Shells With Piezoelectric Layers: A Mixed Laminated Theory With a High Order Displacement Field
,”
Comp. Struct.
,
80
(
27–30
), pp.
2265
2275
.
5.
Corriea
,
I. F. P.
,
Mota Soares
,
C. M.
,
Mota Soares
C. A.
, and
Hreskovits
,
J.
, 2003, “
Analysis of Laminated Conical Shell Structures Using Higher Order Models
,”
Comp. Struct.
,
62
, pp.
383
90
.
6.
Kulkarni
,
S. A.
, and
Bajoria
,
K. M.
, 2003, “
Finite Element Modeling of Smart Plates/Shells Using Higher Order Shear Deformation Theory
,”
Comp. Struct.
,
62
(
1
), pp.
41
50
.
7.
Simões Moita
,
J. M.
,
Correia
,
I. F. P.
,
Mota Soares
,
C. M.
, and
Mota Soares
,
C. A.
, 2004, “
Active Control of Adaptive Laminated Structures With Bonded Piezoelectric Sensors and Actuators
,”
Comp. Struct.
,
82
(
17–19
), pp.
1349
1358
.
8.
Sofiyev
,
A. H.
,
Korkmaz
,
K. A.
,
Mammadov
,
Z.
, and
Kamanli
,
M.
, 2009, “
The Vibration and Buckling of Freely Supported Non-Homogeneous Orthotropic Conical Shells Subjected to Different Uniform Pressures
,”
Int. J. Press. Vess. Pip.
,
86
(
10
), pp.
661
668
.
9.
Chen
,
C.
, and
Dai
,
L.
, 2009, “
Nonlinear Vibration and Stability of a Rotary Truncated Conical Shell With Intercoupling of High and Low Order Modals
,”
Nonlinear Sc. Num. Sim.
,
14
(
1
), pp.
254
269
.
10.
Dash
,
P.
, and
Singh
,
B. N.
, 2009, “
Nonlinear Free Vibration of Piezoelectric Laminated Composite Plate
,”
Finite Elem. Anal. Des.
,
45
, pp.
686
694
.
11.
Panda
,
S. K.
, and
Singh
,
B. N.
, 2010, “
Nonlinear Free Vibration Analysis of Thermally Post-Buckled Composite Spherical Shell Panel
,”
Int. J. Mech. Mat Des.
,
6
(
2
), pp.
175
188
.
12.
Vahid
F.
,
Abdolreza
O.
, and
Peyman
Y.
, 2011, “
Nonlinear Free and Forced Vibration Behavior of Functionally Graded Plate With Piezoelectric Layers in Thermal Environment
,”
Comp. Struct.
,
93
(
9
), pp.
2310
2321
.
13.
Zang
,
Z.
, and
Chen
,
S.
, 1991, “
The Standard Deviations of the Eigen Solutions for Random MDOF Systems
,”
Comp. Struct.
,
39
, pp.
603
607
.
14.
Nigam
,
N. C.
, and
Narayan
,
S.
, 1994,
Applications of Random Vibrations
,
Narosa
,
New Delhi
.
15.
Yadav
,
D.
, and
Verma
,
N.
, 1998, “
Free Vibration of Composite Circular Cylindrical Shells With Random Material Properties. Part I: General Theory
,”
Comp. Struct.
,
41
(
3–4
), pp.
331
338
.
16.
Yadav
,
D.
and
Verma
,
N.
, 2001, “
Free Vibration of Composite Circular Cylindrical Shells With Random Material Properties. Part II: Applications
,”
Comp. Struct.
,
51
(
4
), pp.
371
380
.
17.
Onkar
,
A.K.
, and
Yadav
,
D.
, 2004, “
Non-Linear Free Vibration of Laminated Composite Plate With Random Material Properties
,”
J. Sound Vib.
,
272
(
3–5
), pp.
627
641
.
18.
Onkar
,
A. K.
,
Upadhyay
,
C. S.
, and
Yadav
,
D.
, 2006, “
Generalized Buckling Response of Laminated Composite Plates With Random Material Properties Using Stochastic Finite Elements
,”
Int. J. Mech. Sci.
,
48
(
7
), pp.
780
798
.
19.
Singh
,
B. N.
,
Yadav
,
D.
, and
Iyengar
N. G. R.
, 2001, “
Free Vibration of Laminated Spherical Panels With Random Material Properties
,”
J. Sound Vib.
,
244
, pp.
55
64
.
20.
Singh
,
B. N.
,
Yadav
,
D.
, and
Iyengar
,
N. G. R.
, 2002, “
Free Vibration of Composite Cylindrical Panels With Random Material Properties
,”
Comp. Struct.
,
58
(
4
), pp.
435
442
.
21.
Singh
,
B. N.
, and
Jibumon Babu
,
B.
, 2009, “
Thermal Buckling of Laminated Composite Conical Shell Panel With and Without Piezoelectric Layer With Random Material Properties
,”
Int. J. Crashworthiness
,
14
, pp.
73
81
.
22.
Singh
,
B. N.
,
Vyas
,
N.
, and
Das
,
P.
, 2009, “
Stochastic Free Vibration of Smart Random Plates
,”
J. Struct. Eng. and Mech.
,
31
(
5
), pp.
481
506
.
23.
Singh
,
B. N.
,
Bist
,
A. K. S.
,
Pandit
,
M. K.
, and
Shukla
,
K. K.
, 2009, “
Non-Linear Free Vibration Analysis of Composite Plates With Material Uncertainties: A Monte Carlo Simulation Approach
,”
J. Sound Vib.
,
324
(
1–2
), pp.
126
138
.
24.
Tripathi
,
V.
Singh
,
B. N.
, and
Shukla
,
K. K.
, 2007, “
Free Vibration of Laminated Composite Conical Shells With Random Material Properties
,”
Comp. Struct.
,
81
, pp.
96
104
.
25.
Lal
,
A.
,
Singh
,
B. N.
, and
Kumar
,
R.
, 2008, “
Nonlinear Free Vibration of Laminated Composite Plates on Elastic Foundation With Uncertain System Properties
,”
Int. J. Mech. Sc.
,
50
(
7
), pp.
1203
1212
.
26.
Lal.
,
A.
, and
Singh
,
B. N.
, 2009, “
Stochastic Nonlinear Free Vibration of Laminated Composite Plates Resting on Elastic Foundation in Thermal Environments
,”
Comput. Mech.
,
44
, pp.
15
29
.
27.
Lal
,
A.
,
Singh
,
B. N.
, and
Kumar
,
R.
, 2007, “
Natural Frequency of Laminated Composite Plate Resting on Elastic Foundation With Uncertain System Properties
,”
Struct. Eng. Mech.
,
27
(
2
), pp.
199
222
.
28.
Lal
,
A.
, and
Singh
,
B. N.
, 2010, “
Stochastic Free Vibration of Laminated Composite Plates in Thermal Environments
,”
J. Thermopl. Comp. Mat.
23
(
1
), pp.
57
77
.
29.
Torano
,
J.
,
Rodriguez
,
R.
,
Diego
,
I
,
Rivas
,
J. M.
, and
Casal
M. D.
, 2006, “
FEM Models Including Randomness and Its Application to the Blasting Vibrations Prediction
,”
Comp. Geotech.
,
33
(
1
), pp.
15
28
.
30.
Yang
,
J.
,
Liew
,
K. M.
, and
Kitipornchai
,
S.
, 2005, “
Stochastic Analysis of Compositionally Graded Plates With System Randomness Under Static Loading
,”
Int. J. Mech. Sc.
,
47
(
10
), pp.
1519
1541
.
31.
Chandrashekhar
,
M.
, and
Ganguli
,
R.
, 2010, “
Nonlinear Vibration Analysis of Composite Laminated and Sandwich Plates With Random Material Properties
,”
Int. J. Mech. Sc.
,
52
(
7
), pp.
874
891
.
32.
Kitipornchai
,
S.
,
Yang
,
J.
, and
Liew
,
K.M.
, 2006, “
Random Vibration of the Functionally Graded Laminates in Thermal Environments
,”
Comp. Meth. Appl. Mech. Eng.
195
(
9–12
), pp.
1075
1095
.
33.
Wei
,
G.
,
Nong
,
Z.
, and
Jinchen
,
J.
, 2009, “
A New Method for Random Vibration Analysis of Stochastic Truss Structures
,”
Finite Elem. Anal. Des.
,
45
(
3
), pp.
190
199
.
34.
Jayakumar
,
K.
,
Yadav
,
D.
, and
Nageswara Rao
,
B.
, 2009, “
Nonlinear Free Vibration Analysis of Simply Supported Piezo-Laminated Plates With Random Actuation Electric Potential Difference and Material Properties
,”
Nonlinear Sc. Num. Sim.
,
14
(
4
), pp.
1646
1663
.
35.
Jones
,
R. M.
, 1975,
Mechanics of Composite Materials
,
McGraw-Hill
,
New York
.
36.
Reddy
,
J. N.
, and
Liu
,
C.F.
, 1985, “
A Higher Order Shear Deformation Theory of Laminated Elastic Shells
,”
Int. J. Eng. Sc.
,
23
(
3
), pp.
319
330
.
37.
Reddy
,
J. N.
, 1996,
Mechanics of Laminated Composite Plate Theory and Analysis
,
CRC Press
,
Boca Raton, FL
.
38.
Reddy
,
J. N.
, 1981,
Energy and Variational Methods in Applied Mechanics
,
Wiley
,
New York
.
39.
Cook
,
R. D.
,
Malkus
,
D. S.
, and
Plesha
,
M. E.
, 1989,
Concept and Application of Finite Element Analysis
, 3rd ed.,
John Wiley and Sons
,
New York
.
40.
Kleiber
,
M.
, and
Hien
,
T. D.
, 1992,
The Stochastic Finite Element Method
,
Wiley
,
New York
.
41.
Franklin
,
J. N.
, 1968,
Matrix Theory
,
Prentice Hall, Englewood Cliffs
,
NJ.
42.
Liu
,
W. K.
,
Belytschko
,
T.
, and
Mani
,
A.
, 1986, “
Random Field Finite Elements
,”
Int. J. Num. Meth. Eng.
,
23
(
10
), pp.
1831
1845
.
You do not currently have access to this content.