The centrifugal softening effect is an alleged and elusive reduction of the natural frequencies of a rotating system with increasing speed which is sometimes found in finite element rotordynamics. This reduction may, in some instances, be large enough to cause some of the natural frequencies to vanish, leading to a sort of elastic instability. Some doubts can, however, be cast on the phenomenon itself and on the mathematical models causing it to appear. The aim of the present work is to shed some light on centrifugal softening and to discuss the assumptions that are at the basis of three-dimensional FEM modeling in rotordynamics. One and two degrees of freedom models, such as the ones introduced by Rankine and Jeffcott, are first studied and then the classical rotating beam, ring, disk, and membrane are addressed. Some numerical models, built using the FEM, are then solved using both dedicated and general purpose codes. In all cases no strong centrifugal softening is found.

References

1.
Rao
,
J. S.
,
2011
,
History of Rotating Machinery Dynamics
,
Springer
,
New York
.
2.
Genta
,
G.
,
2009
,
Vibration Dynamics and Control
,
Springer
,
New York
.
3.
Genta
,
G.
,
2005
,
Dynamics of Rotating Systems
,
Springer
,
New York
.
4.
Campbell
,
W.
,
1924
, “
Protection of Steam Turbine Disk Wheels From Axial Vibration
,”
Trans. ASME
,
46
, pp.
31
160
.
5.
Genta
,
G.
, and
Tonoli
,
A.
,
1996
, “
A Harmonic Finite Element for the Analysis of Flexural, Torsional and Axial Rotordynamic Behavior of Discs
,”
J. Sound Vib.
,
196
(
1
), pp.
19
43
.10.1006/jsvi.1996.0465
6.
Genta
,
G.
, and
Tonoli
,
A.
,
1997
, “
A Harmonic Finite Element for the Analysis of Flexural, Torsional and Axial Rotordynamic Behavior of Bladed Arrays
,”
J. Sound Vib.
,
207
(
5
) pp.
693
720
.10.1006/jsvi.1997.1147
7.
Genta
,
G.
,
Feng
,
C.
, and
Tonoli
,
A.
,
2010
, “
Dynamics Behavior of Rotating Bladed Discs: A Finite Element Formulation for the Study of Second and Higher Order Harmonics
,”
J. Sound Vib.
,
239
(
25
), pp.
5289
5306
.10.1016/j.jsv.2010.07.015
8.
Cao
,
Y.
, and
Altintas
,
Y.
,
2004
, “
A General Method for the Modeling of Spindle-Bearing Systems
,”
ASME J. Mech. Des.
,
126
, pp.
1089
1104
.10.1115/1.1802311
9.
Cao
,
Y.
, and
Altintas
,
Y.
,
2007
, “
Modeling of Spindle Bearing and Machine Tool Systems for Virtual Simulation of Milling Operations
,”
Int. J. Mach. Tools Manuf.
,
47
, pp.
1342
1350
.10.1016/j.ijmachtools.2006.08.006
10.
Rantatalo
,
M.
,
Aidanpää
,
J.-O.
,
Göransson
,
B.
, and
Norman
,
P.
,
2006
, “
Milling Machine Spindle Analysis Using FEM and Non-Contact Spindle Excitation and Response Measurement
,”
Int. J. Mach. Tools Manuf.
,
47
(
7–8
), pp.
1034
1045
.10.1016/j.ijmachtools.2006.10.004
11.
Rankine
,
W.
,
1869
, “
Centrifugal Whirling of Shafts
,”
Engineer (London)
, Apr. 9.
12.
Genta
,
G.
, and
Silvagni
,
M.
, “
Three-Dimensional FEM Rotordynamics and the So-Called Centrifugal Softening of Rotors
,” Atti dell'Accademia delle Scienze di Torino (to be published).
13.
Love
,
A. E. H.
,
1944
,
A Treatise on the Mathematical Theory of Elasticity
,
Dover
,
New York
.
14.
Zohar
,
A.
, and
Aboudi
,
J.
,
1973
, “
The Free Vibration of a Thin Circular Finite Rotating Cylinder
,”
Int. J. Mech. Sci.
,
15
, pp.
269
278
.10.1016/0020-7403(73)90009-X
15.
Endo
,
M.
,
Hatmura
,
K.
,
Sakata
,
M.
, and
Taniguchi
,
O.
, “
Flexural Vibration of a Thin Rotating Ring
,”
J. Sound Vib.
,
92
(
2
), pp.
261
272
.10.1016/0022-460X(84)90560-1
16.
Bickford
,
W. B.
, and
Reddy
,
E. S.
,
1985
, “
On the In-Plane Vibration of Rotating Ring
,”
J. Sound Vib.
,
101
(
1
), pp.
13
22
.10.1016/S0022-460X(85)80034-1
17.
Chen
,
Y.
,
Zhao
,
H. B.
,
Shen
,
Z. P.
,
Grieger
,
I.
, and
Kröplin
,
B. H.
,
1993
, “
Vibrations of High Speed Rotating Shells With Calculations for Cylindrical Shells
,”
J. Sound Vib.
,
160
(
1
), pp.
137
160
.10.1006/jsvi.1993.1010
18.
Hoppe
,
R.
,
1871
, “
The Bending Vibration of a Circular Ring
,”
Crelle J. Math.
,
73
, p.
158
.10.1515/crll.1871.73.158
19.
Bryan
,
G. H.
,
1890
, “
On the Beats in the Vibrations of a Revolving Cylinder of Shell
,”
Proc. Cambridge Philos. Soc.
,
7
, pp.
101
111
.
20.
Lin
,
J. L.
, and
Soedel
,
W.
,
1988
, “
On General In-Plane Vibrations of Rotating Thick and Thin Rings
,”
J. Sound Vib.
,
122
(
3
), pp.
547
570
.10.1016/S0022-460X(88)80101-9
21.
Lamb
,
H.
, and
Southwell
,
R.
,
1921
, “
The Vibrations of a Spinning Disk
,”
Proc. R. Soc. London
,
99
, pp.
272
280
.10.1098/rspa.1921.0041
22.
Rao
,
J. S.
,
2002
, “
Rotor Dynamics Comes of Age
,”
Proceedings Sixth IFToMM International Conference Rotor Dynamics
,
Sydney
, September 30–October 3, p. 15.
23.
Gerardin
,
M.
, and
Kill
,
N.
,
1984
, “
A New Approach to Finite Element Modelling of Flexible Rotors
,”
Eng. Comput.
,
1
, pp.
52
64
.10.1108/eb023560
24.
Genta
,
G.
, and
Silvagni
,
M.
,
2005
, “
Some Considerations on Cyclic Symmetry in Rotordynamics
,” ISCORMA-3, Cleveland, OH, September 19–23.
25.
Silvagni
,
M.
,
Genta
,
G.
, and
Tonoli
,
A.
,
2003
, “
Non-Axisymmetrical 3D Element for FEM Rotordynamics
,” ISCORMA-2, Gdańsk, Poland, August 4–8.
26.
Rajan
,
M.
,
Nelson
,
H. D.
, and
Chen
,
W. J.
,
1986
, “
The Dynamics of Rotor Bearing Systems Using Finite Elements
,”
ASME J. Vib., Acoust.
,
108
, p.
197
.10.1115/1.3269324
27.
Genta
,
G.
,
Bassani
,
D.
, and
Delprete
,
C.
,
1996
, “
DYNROT: A Finite Element Code for Rotordynamic Analysis Based on Complex Co-Ordinates
,”
Eng. Comput.
,
13
(
6
), pp.
86
109
.
You do not currently have access to this content.