Vibration-driven systems can move progressively in resistive media owing to periodic motions of internal masses. In consideration of the external dry friction forces, the system is piecewise smooth and has been shown to exhibit different types of stick-slip motions. In this paper, a vibration-driven system with Coulomb dry friction is investigated in terms of sliding bifurcation. A two-parameter bifurcation problem is theoretically analyzed and the corresponding bifurcation diagram is presented, where branches of the bifurcation are derived in view of classical mechanics. The results show that these sliding bifurcations organize different types of transitions between slip and sticking motions in this system. The bifurcation diagram and the predicted stick-slip transitions are verified through numerical simulations. Considering the effects of physical parameters on average steady-state velocity and utilizing the sticking feature of the system, optimization of the system is performed. Better performance of the system with no backward motion and higher average steady-state velocity can be achieved, based on the proposed optimization procedures.

References

1.
Hartog
,
J.
,
1931
, “
Forced Vibrations With Combined Coulomb and Viscous Damping
,”
Trans. ASME
,
53
, pp.
107
115
.
2.
Pratt
,
T.
, and
Williams
,
R.
,
1981
, “
Non-Linear Analysis of Stick/Slip Motion
,”
J. Sound Vib.
,
74
(
4
), pp.
531
542
.10.1016/0022-460X(81)90417-X
3.
Shaw
,
S.
,
1986
, “
On the Dynamic Response of a System With Dry Friction
,”
J. Sound Vib.
,
108
(
2
), pp.
305
325
.10.1016/S0022-460X(86)80058-X
4.
Popp
,
K.
, and
Stelter
,
P.
,
1990
, “
Stick-Slip Vibrations and Chaos
,”
Phil. Trans. R. Soc. London
, Ser. A,
332
, pp.
89
105
.10.1098/rsta.1990.0102
5.
Awrejcewicz
,
J.
,
1992
, “
Dynamics of a Self-Excited Stick-Slip Oscillator With Two Degrees of Freedom Part I. Investigation of Equilibria
,”
Eur. J. Mech. A/Solids
,
9
, pp.
269
282
.
6.
Awrejcewicz
,
J.
,
1992
, “
Dynamics of a Self-Excited Stick-Slip Oscillator With Two Degrees of Freedom Part II. Slip-Stick, Slip-Slip, Stick-Slip Transitions, Periodic and Chaotic Orbits
,”
Eur. J. Mech. A/Solids
,
9
, pp.
397
418
.
7.
Awerjcewicz
,
J.
, and
Olejnik
,
P.
,
2003
, “
Stick-Slip Dynamics of a Two-Degree-of-Freedom System
,”
Int. J. Bifurcation Chaos
,
13
(
4
), pp.
843
861
.10.1142/S0218127403006960
8.
Awrejcewice
,
J.
,
Feckan
,
M.
, and
Olejnik
,
P.
,
2005
, “
On Continuous Approximation of Discontinuous Systems
,”
Nonlinear Anal. Theory, Methods Appl.
,
62
(
7
), pp.
1317
1331
.10.1016/j.na.2005.04.033
9.
Cheng
,
G.
, and
Zu
,
J. W.
,
2003
, “
Nonstick and Stick-Slip Motion of a Coulomb-Damped Belt Drive System Subjected to Multifrequency Excitations
,”
ASME J. Appl. Mech.
,
70
(
6
), pp.
871
887
.10.1115/1.1629754
10.
Galvanetto
,
U.
, and
Bishop
,
S. R.
,
1999
, “
Dynamics of a Simple Damped Oscillator Undergoing Stick-Slip Vibrations
,”
Meccanica
,
34
(
5
), pp.
337
347
.10.1023/A:1004741715733
11.
Liang
,
J.-W.
, and
Feeny
,
B. F.
,
1998
, “
Dynamical Friction Behavior in a Forced Oscillator With a Compliant Contact
,”
ASME J. Appl. Mech.
,
65
(
1
), pp.
250
257
.10.1115/1.2789033
12.
Miller
,
G.
,
1988
, “
The Motion Dynamics of Snakes and Worms
,”
Comput. Graph.
,
22
, pp.
169
173
.10.1145/378456.378508
13.
Chernous'ko
,
F. L.
,
2005
, “
On the Motion of a Body Containing a Movable Internal Mass
,”
Dokl. Phys.
,
50
(
11
), pp.
593
597
.10.1134/1.2137795
14.
Chernous'ko
,
F. L.
,
2006
, “
Analysis and Optimization of the Motion of a Body Controlled by Means of a Movable Internal Mass
,”
J. Appl. Math. Mech.
,
70
(
6
), pp.
819
842
.10.1016/j.jappmathmech.2007.01.003
15.
Chernous'ko
,
F. L.
,
2008
, “
On the Optimal Motion of a Body With an Internal Mass in a Resistive Medium
,”
J. Vib. Control
,
14
(
1–2
), pp.
197
208
.10.1177/1077546307079398
16.
Chernous'ko
,
F. L.
,
2008
, “
The Optimal Periodic Motions of a Two-Mass System in a Resistant Medium
,”
J. Appl. Math. Mech.
,
72
(
2
), pp.
116
125
.10.1016/j.jappmathmech.2008.04.014
17.
Fang
,
H.
, and
Xu
,
J.
,
2011
, “
Dynamics of a Mobile System With an Internal Acceleration-Controlled Mass in a Resistive Medium
,”
J. Sound Vib.
,
330
(
16
), pp.
4002
4018
.10.1016/j.jsv.2011.03.010
18.
Zimmermann
,
K.
,
Zeidis
,
I.
,
Pivovarov
,
M.
, and
Abaza
,
K.
,
2007
, “
Forced Nonlinear Oscillator With Nonsymmetric Dry Friction
,”
Arch. Appl. Mech.
,
77
(
5
), pp.
353
362
.10.1007/s00419-006-0072-2
19.
Zimmermann
,
K.
,
Zeidis
, I
.
,
Bolotnik
,
N.
, and
Pivovarov
,
M.
,
2009
, “
Dynamics of a Two-Module Vibration-Driven System Moving Along a Rough Horizontal Plane
,”
Multibody Syst. Dyn.
,
22
(
2
), pp.
199
219
.10.1007/s11044-009-9158-2
20.
Zimmermann
,
K.
,
Zeidis
,
I.
,
Pivovarov
,
M.
, and
Behn
,
C.
,
2010
, “
Motion of Two Interconnected Mass Points Under Action of Non-Symmetric Viscous Friction
,”
Arch. Appl. Mech.
,
80
(
11
), pp.
1317
1328
.10.1007/s00419-009-0373-3
21.
Fang
,
H.
, and
Xu
,
J.
,
2012
, “
Dynamics of a Three-Module Vibration Driven System With Non-Symmetric Coulomb's Dry Friction
,”
Multibody Syst. Dyn.
,
27
(
4
), pp.
455
485
.10.1007/s11044-012-9304-0
22.
di Bernardo
,
M.
,
Kowalczyk
,
P.
, and
Nordmark
,
A.
,
2003
, “
Sliding Bifurcations: A Novel Mechanism for the Sudden Onset of Chaos in Dry Friction Oscillators
,”
Int. J. Bifurcation Chaos
,
13
(
10
), pp.
2935
2948
.10.1142/S021812740300834X
23.
Kowalczyk
,
P.
, and
Piiroinen
,
P. T.
,
2008
, “
Two-Parameter Sliding Bifurcations of Periodic Solutions in a Dry-Friction Oscillator
,”
Physica D
,
237
(
8
), pp.
1053
1073
.10.1016/j.physd.2007.12.007
24.
Guardia
,
M.
,
Hogan
,
S. J.
, and
Seara
,
T. M.
,
2010
, “
An Analytical Approach to Codimension-2 Sliding Bifurcations in the Dry-Friction Oscillator
,”
SIAM J. Appl. Dyn. Syst.
,
9
(
3
), pp.
769
798
.10.1137/090766826
25.
Galvanetto
,
U.
,
1997
, “
Bifurcations and Chaos in a Four-Dimensional Mechanical System With Dry Friction
,”
J. Sound Vib.
,
204
(
4
), pp.
690
695
.10.1006/jsvi.1997.0907
26.
Galvanetto
,
U.
,
2001
, “
Some Discontinuous Bifurcations in a Two-Block Stick-Slip System
,”
J. Sound Vib.
,
248
(
4
), pp.
653
669
.10.1006/jsvi.2001.3809
27.
di Bernardo
,
M.
,
Budd
,
C.
,
Champneys
,
A.
, and
Kowalczyk
,
P.
,
2008
,
Piecewise-Smooth Dynamical Systems: Theory and Application
, 1st ed., Vol.
163
,
Springer-Verlag London Ltd.
,
London
.
28.
Filippov
,
A.
,
1988
,
Differential Equations With Discontinuous Righthand Sides
,
Kluwer
,
Dordrecht, Germany
.
29.
Feigin
,
M.
,
1994
.
Forced Oscillations in Systems With Discontinuous Nonlinearities
,
Nauka
,
Moscow
(in Russian).
30.
di Bernardo
,
M.
,
Kowalczyk
,
P.
, and
Nordmark
,
A.
,
2002
, “
Bifurcations of Dynamical Systems With Sliding: Derivation of Normal-Form Mappings
,”
Physica D
,
170
(
3–4
), pp.
175
205
.10.1016/S0167-2789(02)00547-X
31.
Piiroinen
,
P. T.
, and
Kuznetsov
,
Y. A.
,
2008
, “
An Event-Driven Method to Simulate Filippov Systems With Accurate Computing of Sliding Motions
,”
ACM Trans. Math. Softw.
,
34
(
3
), Article 13.10.1145/1356052.1356054
32.
Utkin
,
V.
,
1992
,
Sliding Modes in Control Optimization
,
Springer-Verlag
,
Berlin
.
33.
di Bernardo
,
M.
,
Johansson
,
K. H.
, and
Vasca
,
F.
,
2001
, “
Self-Oscillations and Sliding in Relay Feedback Systems: Symmetry and Bifurcations
,”
Int. J. Bifurcation Chaos
,
11
(
4
), pp.
1121
1140
.10.1142/S0218127401002584
34.
Kowalczyk
,
P.
, and
Di Bernardo
,
M.
,
2001
, “
On a Novel Class of Bifurcations in Hybrid Dynamical Systems—The Case of Relay Feedback Systems
,”
Proceedings of the 4th International Workshop on Hybrid Systems: Computation and Control
,
Rome, Italy
, March 28–30,
M.
Di Benedetto
and
A.
Sangiovanni-Vincentelli
, eds., Springer-Verlag, Berlin, pp.
361
374
.
You do not currently have access to this content.