A linear model for the bending-bending-torsional-axial vibration of a spinning cantilever beam with a rigid body attached at its free end is derived using Hamilton's principle. The rotation axis is perpendicular to the beam (as for a helicopter blade, for example). The equations split into two uncoupled groups: coupled bending in the direction of the rotation axis with torsional motions and coupled bending in the plane of rotation with axial motions. Comparisons are made to existing models in the literature and some models are corrected. The practically important first case is examined in detail. The governing equations of motion are cast in a structured way using extended variables and extended operators. With this structure the equations represent a classical gyroscopic system and Galerkin discretization is readily applied where it is not for the original problem. The natural frequencies, vibration modes, stability, and bending-torsion coupling are investigated, including comparisons with past research.

References

1.
Bhadbhade
,
V.
,
Jalili
,
N.
, and
Mahmoodi
,
S. N.
,
2008
, “
A Novel Piezoelectrically Actuated Flexural/Torsional Vibrating Beam Gyroscope
,”
J. Sound Vib.
,
311
(
3-5
), pp.
1305
1324
.10.1016/j.jsv.2007.10.017
2.
Ansari
,
M.
,
Esmailzadeh
,
E.
, and
Jalili
,
N.
,
2011
, “
Exact Frequency Analysis of a Rotating Cantilever Beam With Tip Mass Subjected to Torsional Bending Vibrations
,”
ASME J Vibr. Acoust.
,
133
(
4
), p.
041003
.10.1115/1.4003398
3.
Yoo
,
H. H.
and
Shin
,
S. H.
,
1998
, “
Vibration Analysis of Rotating Cantilever Beams
,”
J. Sound Vib.
,
212
(
5
), pp.
807
828
.10.1006/jsvi.1997.1469
4.
Lee
,
S. Y.
and
Sheu
,
J. J.
,
2007
, “
Free Vibrations of a Rotating Inclined Beam
,”
ASME J. Appl. Mech.
,
74
(
3
), pp.
406
414
.10.1115/1.2200657
5.
Sinha
,
S. K.
,
2007
, “
Combined Torsional-Bending-Axial Dynamics of a Twisted Rotating Cantilever Timoshenko Beam With Contact-Impact Loads at the Free End
,”
ASME J. Appl. Mech.
,
74
(
3
), pp.
505
522
.10.1115/1.2423035
6.
Surace
,
G.
,
Anghel
,
V.
, and
Mares
,
C.
,
1997
, “
Coupled Bending Bending-Torsion Vibration Analysis of Rotating Pretwisted Blades: An Integral Formulation and Numerical Examples
,”
J. Sound Vib.
,
206
(
4
), pp.
473
486
.10.1006/jsvi.1997.1092
7.
Jones
,
J. P.
and
Bhuta
,
P. G.
,
1963
, “
Vibrations of a Whirling Rayleigh Beam
,”
J. Acoust. Soc. Am.
,
35
(
7
), pp.
994
1002
.10.1121/1.1918645
8.
Anderson
,
G. L.
,
1975
, “
On the Extensional and Flexural Vibrations of Rotating Bars
,”
Int. J. Non-Linear Mech.
,
10
(
5
), pp.
223
236
.10.1016/0020-7462(75)90014-1
9.
Hoa
,
S. V.
,
1979
, “
Vibration of a Rotating Beam With Tip Mass
,”
J. Sound Vib.
,
67
(
3
), pp.
369
381
.10.1016/0022-460X(79)90542-X
10.
Wright
,
A. D.
,
Smith
,
C. E.
,
Thresher
,
R. W.
, and
Wang
,
J. L. C.
,
1982
, “
Vibration Modes of Centrifugally Stiffened Beams
,”
ASME J. Appl. Mech.
,
49
(
1
), pp.
197
202
.10.1115/1.3161966
11.
Naguleswaran
,
S.
,
1994
, “
Lateral Vibration of a Centrifugally Tensioned Uniform Euler-Bernoulli Beam
,”
J. Sound Vib.
,
176
(
5
), pp.
613
624
.10.1006/jsvi.1994.1402
12.
Yoo
,
H. H.
,
Kwak
,
J. Y.
, and
Chung
,
J.
,
2001
, “
Vibration Analysis of Rotating Pre-Twisted Blades With a Concentrated Mass
,”
J. Sound Vib.
,
240
(
5
), pp.
891
908
.10.1006/jsvi.2000.3258
13.
Yoo
,
H. H.
,
Seo
,
S.
, and
Huh
,
K.
,
2002
, “
The Effect of a Concentrated Mass on the Modal Characteristics of a Rotating Cantilever Beam
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci
,
216
(
2
), pp.
151
163
.10.1243/0954406021525098
14.
Chung
,
J.
and
Yoo
,
H. H.
,
2002
, “
Dynamic Analysis of a Rotating Cantilever Beam by Using the Finite Element Method
,”
J. Sound Vib.
,
249
(
1
), pp.
147
164
.10.1006/jsvi.2001.3856
15.
Tsai
,
M. H.
,
Lin
,
W. Y.
,
Zhou
,
Y. C.
, and
Hsiao
,
K. M.
,
2011
, “
Investigation on Steady State Deformation and Free Vibration of a Rotating Inclined Euler Beam
,”
Int. J. Mech. Sci.
,
53
(
12
), pp.
1050
1068
.10.1016/j.ijmecsci.2011.08.011
16.
Lacarbonara
,
W.
,
Arvin
,
H.
, and
Bakhtiari-Nejad
,
F.
,
2012
, “
A Geometrically Exact Approach to the Overall Dynamics of Elastic Rotating Blades—Part 1: Linear Modal Properties
,”
Nonlinear Dyn.
,
70
(
1
), pp.
659
675
.10.1007/s11071-012-0486-z
17.
Yigit
,
A.
,
Scott
,
R. A.
, and
Ulsoy
,
A. G.
,
1988
, “
Flexural Motion of a Radially Rotating Beam Attached to a Rigid Body
,”
J. Sound Vib.
,
121
(
2
), pp.
201
210
.10.1016/S0022-460X(88)80024-5
18.
Yoo
,
H. H.
,
Ryan
,
R. R.
, and
Scott
,
R. A.
,
1995
, “
Dynamics of Flexible Beams Undergoing Overall Motions
,”
J. Sound Vib.
,
181
(
2
), pp.
261
278
.10.1006/jsvi.1995.0139
19.
Haering
,
W. J.
,
Ryan
,
R. R.
, and
Scott
,
R. A.
,
1995
, “
New Formulation for General Spatial Motion of Flexible Beams
,”
J. Guid. Control Dyn.
,
18
(
1
), pp.
82
86
.10.2514/3.56660
20.
Meirovitch
,
L.
,
1974
, “
A New Method of Solution of the Eigenvalue Problem for Gyroscopic Systems
,”
AIAA J.
,
12
(
10
), pp.
1337
1342
.10.2514/3.49486
21.
D'Eleuterio
,
G.
and
Hughes
,
P.
,
1984
, “
Dynamics of Gyroelastic Continua
,”
ASME J. Appl. Mech.
,
51
(
2
), pp.
415
422
.10.1115/1.3167634
22.
Wickert
,
J.
and
Mote
,
C. D.
, Jr.
,
1990
, “
Classical Vibration Analysis of Axially Moving Continua
,”
ASME J. Appl. Mech.
,
57
, pp.
738
744
.10.1115/1.2897085
23.
Parker
,
R. G.
,
1999
, “
Supercritical Speed Stability of the Trivial Equilibrium of an Axially Moving String on an Elastic Foundation
,”
J. Sound Vib.
,
221
(
2
), pp.
205
219
.10.1006/jsvi.1998.1936
24.
Tobias
,
S. A.
and
Arnold
,
R. N.
,
1957
, “
The Influence of Dynamical Imperfection on the Vibration of Rotating Disks
,”
Proc. Inst. Mech. Eng.
,
171
(
1
), pp.
669
690
.10.1243/PIME_PROC_1957_171_056_02
25.
Chen
,
J. S.
and
Bogy
,
D. B.
,
1992
, “
Effects of Load Parameters on the Natural Frequencies and Stability of a Flexible Spinning Disk With a Stationary Load System
,”
ASME J. Appl. Mech.
,
59
(
2
), pp.
S230
S235
.10.1115/1.2899494
26.
Mote
,
C. D.
, Jr.
,
1970
, “
Stability of Circular Plates Subjected to Moving Loads
,”
J. Franklin Inst.
,
290
(
4
), pp.
329
344
.10.1016/0016-0032(70)90188-2
27.
Parker
,
R. G.
,
1999
, “
Analytical Vibration of Spinning, Elastic Disk Spindle Systems
,”
ASME J. Appl. Mech.
,
66
(
1
), pp.
218
224
.10.1115/1.2789149
28.
Parker
,
R. G.
and
Sathe
,
P. J.
,
1999
, “
Free Vibration and Stability of a Spinning Disk-Spindle System
,”
ASME J. Vibr. Acoust.
,
121
(
3
), pp.
391
396
.10.1115/1.2893992
29.
Cooley
,
C. G.
and
Parker
,
R. G.
,
2012
, “
Vibration Properties of High Speed Planetary Gears With Gyroscopic Effects
,”
ASME J. Vibr. Acoust.
,
134
(
6
), p.
061014
.10.1115/1.4006646
30.
Hodges
,
D. H.
and
Bliss
,
R. R.
,
1994
, “
Axial Instability of Rotating Rods Revisited
,”
Int. J. Non-Linear Mech.
,
29
(
6
), pp.
879
887
.10.1016/0020-7462(94)90060-4
31.
Brunelle
,
E. J.
,
1971
, “
Stress Redistribution and Instability of Rotating Beams and Disks
,”
AIAA J.
,
9
(
4
), pp.
758
759
.10.2514/3.6270
32.
Friedman
,
B.
,
1990
,
Principles and Techniques of Applied Mathematics
,
Dover
,
New York
.
33.
Beikmann
,
R. S.
,
Perkins
,
N. C.
, and
Ulsoy
,
A. G.
,
1996
, “
Nonlinear Coupled Vibration Response of Serpentine Belt Drive Systems
,”
ASME J. Vibr. Acoust.
,
118
(
4
), pp.
567
574
.10.1115/1.2888336
34.
Kong
,
L.
and
Parker
,
R. G.
,
2004
, “
Coupled Belt-Pulley Vibration in Serpentine Drives With Belt Bending Stiffness
,”
ASME J. Appl. Mech.
,
71
(
1
), pp.
109
119
.10.1115/1.1641064
35.
Wu
,
X.
and
Parker
,
R. G.
,
2008
, “
Modal Properties of Planetary Gears With an Elastic Continuum Ring Gear
,”
ASME J. Appl.Mech.
,
75
(
3
), p.
031014
.10.1115/1.2839892
36.
Ervin
,
E. K.
and
Wickert
,
J. A.
,
2007
, “
Repetitive Impact Response of a Beam Structure Subjected to Harmonic Base Excitation
,”
J. Sound Vib.
,
307
(
1-2
), pp.
2
19
.10.1016/j.jsv.2007.06.038
37.
Leissa
,
A. W.
,
1974
, “
On a Curve Veering Aberration
,”
ZAMP
,
25
(
1
), pp.
99
111
.10.1007/BF01602113
38.
Kuttler
,
J. R.
and
Sigillito
,
V. G.
,
1981
, “
On Curve Veering
,”
J. Sound Vib.
,
75
(
4
), pp.
585
588
.10.1016/0022-460X(81)90448-X
39.
Perkins
,
N. C.
and
Mote
,
C. D.
, Jr.
,
1986
, “
Comments on Curve Veering in Eigenvalue Problems
,”
J. Sound Vib.
,
106
(
3
), pp.
451
463
.10.1016/0022-460X(86)90191-4
You do not currently have access to this content.